
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/379692061

Temporal Graphs: From Modelling to Analysis

Thesis · December 2023

CITATIONS

0
READS

45

1 author:

Landy Andriamampianina

Activus Group

13 PUBLICATIONS 39 CITATIONS

SEE PROFILE

All content following this page was uploaded by Landy Andriamampianina on 09 April 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/379692061_Temporal_Graphs_From_Modelling_to_Analysis?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/379692061_Temporal_Graphs_From_Modelling_to_Analysis?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Landy-Andriamampianina?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Landy-Andriamampianina?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Landy-Andriamampianina?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Landy-Andriamampianina?enrichId=rgreq-259aa4aa2dc4b77dbb4e27f8f7e82157-XXX&enrichSource=Y292ZXJQYWdlOzM3OTY5MjA2MTtBUzoxMTQzMTI4MTIzNTI0NzQzN0AxNzEyNjg0MzQ3Mjg0&el=1_x_10&_esc=publicationCoverPdf

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse Capitole (UT Capitole)

Présentée et soutenue le 6 Décembre 2023 par :
Landy ANDRIAMAMPIANINA

Temporal Graphs: From Modelling to Analysis

JURY
Laurent WENDLING Professeur, Université Paris Cité Rapporteur
Esteban ZIMÁNYI Professeur, Université Libre de Bruxelles Rapporteur
Arnaud CASTELLTORT Mâıtre de Conférences, Polytech Montpellier Examinateur
Chantal SOULÉ-DUPUY Professeure, Université Toulouse Capitole Présidente du jury
Franck RAVAT Professeur, Université Toulouse Capitole Directeur de thèse

Nathalie
VALLÈS-PARLANGEAU

Mâıtresse de Conférences, Université de Pau et
des Pays de l’Adour

Co-directrice de
thèse

École doctorale et spécialité :
EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse : Informatique et Télécommunications

Unité de Recherche :
IRIT: Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Franck RAVAT et Nathalie VALLÈS-PARLANGEAU

Rapporteurs :
Laurent WENDLING et Esteban ZIMÁNYI

Résumé

Aujourd’hui, les entités du monde réel sont de plus en plus interconnectées (par exemple,
les individus qui interagissent sur les plateformes sociales). Néanmoins, ces entités et
leur interconnectivité évoluent continuellement dans le temps. Elles peuvent apparâıtre
et disparâıtre au fil du temps. De plus, leurs caractéristiques descriptives peuvent être
ajoutées, supprimées ou mises à jour au fil du temps.

Les données générées par les entités interconnectées sont généralement représentées
par des Graphes. Cependant, les graphes statiques ne sont pas suffisants pour intégrer le
concept d’évolution temporelle. Cette thèse aborde donc la question de recherche suivante
: Comment permettre des analyses sur des données graphes enrichies par des évolutions
temporelles ? Ce problème implique trois défis principaux : (i) Comment incorporer
l’évolution temporelle dans un graphe statique ?, (ii) Comment trouver des informations
dans un graphe temporel ? et, (iii) Comment découvrir des connaissances dans un tel
graphe ?

Du point de vue de la modélisation, nous définissons une solution de gestion complète
pour les graphes intégrant des évolutions temporelles : un modèle conceptuel jusqu’à
sa mise en œuvre. Tout d’abord, notre modèle conceptuel, appelé Graphe Temporel,
inclut des concepts proches du monde réel : des entités, des relations et des états
pour capturer leur évolution temporelle. Deuxièmement, nous proposons des règles pour
traduire automatiquement notre modèle conceptuel en un modèle de graphe de propriétés.
Troisièmement, nous proposons une implémentation dans des solutions de stockage ori-
entées graphe. Enfin, les résultats expérimentaux montrent que notre solution de gestion
est (i) réalisable, c’est-à-dire implémentable dans une solution de stockage orientée graphe,
(ii) utilisable pour les analyses orientées métier, (iii) efficace en termes de stockage et de
performance d’interrogation, et (iv) passant à l’échelle lorsque le volume de données aug-
mente.

Du point de vue de l’interrogation, nous fournissons une solution permettant aux util-
isateurs de trouver des informations pour répondre à des questions métiers (‘Quoi ?’, ‘Qui
?’, ‘Où ?’, ‘Quand ?’). L’avantage de notre solution d’interrogation pour les graphes
avec des évolutions temporelles est d’être complète. Tout d’abord, cette solution inclut
des opérateurs conceptuels, qui sont orientés vers l’utilisateur et composables. Ils per-
mettent de trouver des informations dépendantes du temps sur la topologie, ainsi que
sur différents composants d’un graphe temporel. Pour être applicables, nous proposons
des règles de traduction de nos opérateurs conceptuels vers des opérateurs logiques pour
l’interrogation du modèle de graphe de propriétés. Des expérimentations sont menées pour
vérifier que notre solution d’interrogation permet d’appliquer efficacement des analyses

i

orientées métier sur des jeux de données du monde réel.

Du point de vue de la découverte de connaissances, nous proposons une solution per-
mettant aux utilisateurs d’extraire des informations cachées pour répondre à des questions
complexes (‘Comment ?’). D’une part, cette solution définit un nouveau motif, spécifiant
une combinaison d’éléments d’information d’un graphe temporel à extraire. Notre mo-
tif présente l’avantage (i) de capturer pleinement l’information des multiples dimensions
d’un graphe temporel et (ii) de représenter des mécanismes d’évolution couvrant plusieurs
groupes d’entités connectées au lieu d’un seul. D’autre part, nous proposons un algo-
rithme permettant d’extraire notre motif d’un graphe temporel. Étant donné que tous
les algorithmes d’extraction de motifs sont confrontés au problème de la complexité de
calcul élevée, nous proposons une stratégie d’extraction pour réduire cette dernière. Nous
menons des expérimentations confirmant que (i) notre motif est utile, notamment pour
comprendre les impacts d’événements perturbateurs dans des jeux de données du monde
réel, et que (ii) notre algorithme passe à l’échelle lorsque le volume de données augmente.

ii

Abstract

Today, real-world entities are becoming increasingly interconnected (e.g., individuals in-
teracting on social platforms). Nevertheless, these entities and their interconnectivity
evolve continually over time. They may appear and disappear over time. Moreover, their
descriptive characteristics may be added, removed or updated over time.

Data generated by interconnected entities are generally represented by Graphs. How-
ever, static graphs are not enough to integrate the concept of temporal evolution. This
thesis addresses therefore the problem of enabling analyses on graph data enriched with
temporal evolution. This problem induces three main challenges: (i) How can we incorpo-
rate temporal evolution in a static graph?, (ii) How can we find information in a temporal
graph? and, (iii) How can we discover knowledge in such a graph?

From a modelling point of view, we define a complete management solution for graphs
with temporal evolution, from a conceptual model to its implementation. First, our con-
ceptual model, called Temporal Graph, includes concepts close to the real-world: entities,
relationships, and states to capture their temporal evolution. Second, we propose map-
ping rules to translate automatically our conceptual model to the property graph model.
Third, we propose an implementation in graph-oriented data stores. Finally, the exper-
imental results show that our management solution is (i) feasible, i.e., implementable
in graph-oriented data stores, (ii) usable for business analyses, (iii) efficient in terms of
storage and query performance, and (iv) scalable when the data volume increases.

From a querying point of view, we provide a solution allowing users to find information
for answering business questions (‘What?’, ‘Who?’, ‘Where?’, ‘When?’). The advantage
of our querying solution for graphs with temporal evolution is to be complete. First, this
solution includes conceptual operators, which are user-oriented and composable. They
enable to find time-dependent information on the topology, as well as on different com-
ponents of the temporal graph. To be implementable, we propose mapping rules of our
conceptual operators into logical operators for querying the property graph model. We
verify through experiments that our querying solution allows effectively applying business
analyses on real-world datasets.

From a knowledge discovery point of view, we offer a solution allowing users to ex-
tract hidden information for answering complex business questions (‘How?’). On the one
hand, this solution defines a novel pattern, specifying a combination of information pieces
of temporal graph to be extracted. Our pattern has the advantages of (i) fully capturing
information from the multiple dimensions of a temporal graph and (ii) representing evolu-
tion mechanisms spanning several groups of connected entities instead of a single one. On
the other hand, we propose an algorithm to extract our pattern from a temporal graph.

iii

Since all pattern mining algorithms face the problem of high computational complexity,
we propose a mining strategy to reduce the latter. We conduct experiments confirming
that (i) our pattern is useful, notably to understand the impacts of disruptive events in
real-world datasets, and that (ii) our algorithm is scalable when data volume increases.

iv

Publication List

National Conferences
Andriamampianina, L., Ravat, F., Song, J., & Vallès-Parlangeau, N. (2020). A generic
modelling to capture the temporal evolution in graphs. In 16e jounées EDA Business
Intelligence & Big Data (EDA), vol. RNTI-B-16, pp.19-32

International Conferences
Andriamampianina, L., Ravat, F., Song, J., & Vallès-Parlangeau, N. (2021). Towards
an efficient approach to manage graph data evolution: conceptual modelling and experi-
mental assessments. In International Conference on Research Challenges in Information
Science (pp. 471-488). Springer, Cham.

Andriamampianina, L., Ravat, F., Song, J., & Vallès-Parlangeau, N. (2022). Querying
Temporal Property Graphs. In International Conference on Advanced Information
Systems Engineering (pp. 355-370). Springer, Cham.

Cheng, Z., Andriamampianina, L., Ravat, F., Song, J., Vallès-Parlangeau, N., Fournier-
Viger, P., & Selmaoui-Folcher, N. (2023). Mining Frequent Sequential Subgraph
Evolutions in Dynamic Attributed Graphs. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer.

Andriamampianina, L., Ravat, F., Song, J., & Vallès-Parlangeau, N. (2023). Semantic
Centrality for Temporal Graph. In New Trends in Database and Information Systems -
ADBIS 2023 Short Papers, Barcelona, Spain, September 4-7, 2023, Proceedings.

International Journals
Andriamampianina, L., Ravat, F., Song, J., & Vallès-Parlangeau, N. (2022). Graph data
temporal evolutions: From conceptual modelling to implementation. Data & Knowledge
Engineering, 139, 102017.

v

Contents

1 Introduction 1
1 Context . 2
2 Problem Definition . 3

2.1 How can we incorporate temporal evolution in static graphs ? . . . 3
2.2 How can we explore graphs with temporal evolution? 3

3 Contributions . 4
4 Manuscript Outline . 4

2 Modelling Temporal Graphs 7
1 Introduction . 8
2 Preliminary . 9

2.1 Graph . 9
2.2 Temporal Graph . 10

3 Related Work . 11
3.1 Conceptual level . 11

3.1.1 Time Modelling . 12
3.1.2 Temporal Evolution Modelling 13

3.2 Logical level . 16
3.3 Physical level . 16
3.4 Summary . 17

4 Conceptual Modelling . 17
4.1 Time . 17
4.2 Temporal Graph . 18
4.3 Temporal Evolution . 20
4.4 Example . 21

5 Logical modelling . 27
6 Implementation of a Temporal Graph Dataset: a Case Study 30
7 Experimental Assessments . 35

7.1 Protocol . 35
7.1.1 Objectives . 35
7.1.2 Methods . 35
7.1.3 Datasets . 36
7.1.4 Benchmark queries . 37

7.2 Technical environment . 37
7.3 Summary . 39
7.4 Results of the efficiency evaluation of our model 39

7.4.1 Observations of storage performance 39
7.4.2 Observations of query performance 39

vi

7.4.3 Discussion . 41
7.4.4 Implications . 42

7.5 Results of the scalability evaluation of our model 42
7.5.1 Observations . 42
7.5.2 Discussion . 42
7.5.3 Implications . 43

8 Conclusion . 43

3 Querying Temporal Graphs 46
1 Introduction . 47
2 Related Work . 47

2.1 Temporal Graph Algebras . 48
2.2 Extensions of textual query languages 48

2.2.1 SPARQL[t] . 48
2.2.2 T-GQL . 49

2.3 Programming Tools . 50
2.3.1 Historical Graph Store 50
2.3.2 Gradoop . 51
2.3.3 Clock-G . 52

2.4 Comparative Analysis of Related Work 53
2.4.1 Analysis criteria . 55
2.4.2 Practicality criteria . 55
2.4.3 Summary . 56

3 Proposition . 58
3.1 Conceptual Level . 58

3.1.1 Temporal Graph . 58
3.1.2 Running Example . 59
3.1.3 Operators for Querying Temporal Graph 61

3.2 Logical Level . 68
3.2.1 Temporal Graph to Property Graph 68
3.2.2 Logical Operators . 69
3.2.3 Mapping Conceptual Operators to Logical Operators . . 71

3.3 Physical Level . 75
4 Experimental Assessments . 77

4.1 Technical Environment . 77
4.2 Datasets . 78
4.3 Benchmark Analyses . 78
4.4 Experimental Results . 79

4.4.1 Analyses including Attribute Dimension 80
4.4.2 Analyses including Time Dimension 81
4.4.3 Analyses including Attribute and Time Dimensions . . . 81
4.4.4 Analyses including Topology Dimension 82
4.4.5 Analyses including Topology and Attribute Dimensions . 83
4.4.6 Analyses including Topology and Time Dimensions . . . 84
4.4.7 Analyses including Topology, Attribute and Time Di-

mensions . 85
4.4.8 Summary . 86

5 Conclusion . 86

vii

4 Knowledge Discovery in Temporal Graphs 88
1 Introduction . 89

1.1 Context . 89
1.2 Challenges . 89
1.3 Contributions and Outline . 90

2 Related Work . 90
2.1 Origins of Pattern Mining in Temporal Graphs 91

2.1.1 Frequent Itemsets and Association Rules Mining 91
2.1.2 Sequential Pattern Mining 93

2.2 Pattern Mining in Temporal Graphs 95
2.2.1 Cohesive Co-evolution Patterns 96
2.2.2 Trend Dynamic Attributed Subgraph Patterns 97
2.2.3 Triggering Patterns . 98
2.2.4 Significant Trend Sequences 98
2.2.5 Attribute Evolution Rules 98
2.2.6 Recurrent Patterns . 99

2.3 Comparative Analysis of Pattern Mining Approaches in Temporal
Graphs . 100
2.3.1 Patterns . 101
2.3.2 Mining Strategy . 103
2.3.3 Conclusion . 103

3 Frequent Sequential Subgraph Evolutions (FSSE) and Problem Setting . . 103
3.1 Dynamic Attributed Graph . 104
3.2 A New Pattern . 106
3.3 Complementary Constraints . 109
3.4 Problem Setting . 111

4 Mining Frequent Sequential Subgraph Evolutions (FSSEMiner Algorithm) 111
4.1 Overview of the Algorithm . 111
4.2 Process of the Algorithm . 112

4.2.1 Extraction of Subgraph Candidates 112
4.2.2 Generation of Size-1 Patterns by Graph Addition 115
4.2.3 Extension of Patterns 117

4.3 Time Complexity of the Algorithm 119
4.3.1 Complexity of Subgraph Candidates Extraction 120
4.3.2 Complexity of Graph Addition 121
4.3.3 Complexity of Extension 121
4.3.4 Total Complexity . 122

5 Experimental Assessments of FSSEMiner 122
5.1 Experimental conditions . 123

5.1.1 Technical Environment 123
5.1.2 Synthetic Datasets . 123
5.1.3 Real-world Datasets . 123
5.1.4 Choice of constraints . 125

5.2 Quantitative Evaluation . 126
5.2.1 Impact of the number of timestamps 126
5.2.2 Impact of the number of attributes 126
5.2.3 Impact of the number of vertices and edges 127

5.3 Qualitative Evaluation . 127

viii

5.3.1 Analysis of US Flights patterns 127
5.3.2 Analysis of China Covid patterns 130

6 Conclusion . 133

5 Conclusion 135
1 Contributions . 136
2 Future Work . 138

2.1 Short-term plan . 138
2.1.1 Implementation Alternatives of our TG Model and Op-

erators . 138
2.1.2 Centrality Analysis in Temporal Graph Data 138

2.2 Mid-term plan . 139
2.2.1 Updating Temporal Graph Data 139
2.2.2 Improvements of Knowledge Discovery in Temporal

Graph Data . 139
2.3 Long-term plan . 139

2.3.1 New Exploration Perspectives 139
2.3.2 Temporal Graph in Data Lakes 140

ix

List of Figures

1.1 Thesis Scope . 6

2.1 Our management solution of TG . 9
2.2 Evolution in a graph between the time points t1 and t2 11
2.3 Time modelling. 18
2.4 Metamodel of our conceptual modelling . 20
2.5 Schema of the e-commerce dataset . 23
2.6 Evolution management of the e-commerce dataset with the snapshot-based

model . 24
2.7 Evolution management of the e-commerce dataset with our temporal graph

model . 26
2.8 Extended example . 27
2.9 Translation of our conceptual temporal graph in Figure 2.7 into the logical

property graph . 30
2.10 Implementation of the dataset in Figure 2.7 in Neo4j 31
2.11 Result of business analysis B1. 32
2.12 Result of business analysis B2. 33
2.13 Result of business analysis B3. 34
2.14 Result of business analysis B4. 35
2.15 Execution times of 28 benchmark queries. *ROM = Run Out of Memory. . 40
2.16 Average execution times gain (in %) of our temporal graph over classic and

optimized snapshots by query types. *We do not take into account the
execution time of Q28 in the computation of average execution time of SP
queries because it explodes or runs out of memory for each implementation.
SE = Single Entity, SU = Subgraph, G = Entire Graph, AS = Attribute Set,
AV = Attribute Value, T = Topology, SP = Single Point, MP = Multiple
Points, SI = Single Interval, MI = Multiple Intervals, C = Comparison,
A = Aggregation. 41

2.17 Average execution times of SE queries according to three scale factors. SE=
Single Entity . 44

2.18 Average execution times of SU queries according to three scale factors.
SU= Subgraph . 44

3.1 New syntax constructors in SPARQL[t] (Zhang et al., 2019) 49
3.2 The architecture of the system proposed by (Zhang et al., 2019) 49
3.3 An example of T-GQL query with the SNAPSHOT operator (Debrouvier

et al., 2021) . 50

x

3.4 An example of T-GQL query with the BETWEEN operator (Debrouvier
et al., 2021) . 50

3.5 The architecture of the system proposed by (Debrouvier et al., 2021) . . . 51
3.6 The architecture of the system proposed by (Khurana and Deshpande,

2016) . 51
3.7 The architecture of the system proposed by (Rost et al., 2021) 52
3.8 An example of query in GrALa using the snapshot operator (Rost et al.,

2021) . 52
3.9 The architecture of the system proposed by (Massri et al., 2022) 53
3.10 Analysis dimensions of temporal graph data 54
3.11 An example of temporal graph . 60
3.12 Result of the Example 1 . 65
3.13 Result of the Example 2 . 65
3.14 Result of the Example 3. 67
3.15 An example of property graph . 70

4.1 The process of Knowledge Discovery . 89
4.2 Origins of Pattern Mining in Temporal Graphs 91
4.3 A vertical representation of a sequence database. The column SID refers

to the sequence identifier. The column EID refers to the position of the
item in the sequence SID. 94

4.4 Process of PrefixSpan algorithm . 95
4.5 A dynamic attributed graph having four timestamps with numerical at-

tribute values . 96
4.6 A sequence of trend graphs . 96
4.7 A cohesive co-evolution pattern (a), a trend dynamic attributed subgraph

(b) . 97
4.8 A triggering pattern ⟨{a+, b+}, {c−}, {deg+}⟩ supported by the vertices

in yellow (u1) and blue (u3). Source: Kaytoue et al. (2014) 98
4.9 A significant trend sequence ⟨{a1+, a2+}, {a3−}⟩. Source: Fournier-Viger

et al. (2019) . 99
4.10 An attribute evolution rule ({x, y, z}, {(x, y), (y, z)}, {x : a+, z : b−}, {y :

c+, d−}). Source: Fournier-Viger et al. (2020b) 99
4.11 A recurrent pattern . 100
4.12 Dynamic attributed graph . 104
4.13 Dynamic attributed graph after pre-processing 106
4.14 Frequent subgraph . 107
4.15 A frequent sequential subgraph evolution 108
4.16 FSSE VS reccurrent patterns . 110
4.17 Main process of the FSSE algorithm . 113
4.18 Graph addition . 118
4.19 Additions and extensions of patterns from {t1, t2} 119
4.20 A FSSE solution beginning from {t1, t2} 120
4.21 Addition for the timestamp combination T 3

1 122
4.22 Experimental process overview . 123
4.23 Impact of the number of timestamps (synthetic datasets) 127
4.24 Impact of the number of attributes (synthetic datasets) 128
4.25 Impact of the number of vertices and edges (synthetic datasets) 128

xi

4.26 A FSSE pattern extracted from the US Flights dataset 129
4.27 Map of US to show the change in the airport network 130
4.28 A reccurrent pattern extracted from the US Flights dataset in (Cheng et al.,

2017) . 131
4.29 Two FSSE patterns extracted from COVID dataset 132

xii

List of Tables

2.1 Temporal graph models at the conceptual level. The capital letters in the
table are defined as follows: P = Point-based data model, I = Interval-
based data model, V = Vertex, E = Edge 14

2.2 Implementation of temporal graph models at the physical level 15
2.3 Evolution of topology in TG . 21
2.4 Evolution of attribute set and attribute value in TG 22
2.5 Mapping rules of the conceptual temporal graph into the logical property

graph. ∗startvalidtime and endvalidtime. 28
2.6 Characteristics of datasets. AS = Attribute Set, AV = Attribute Value, T

= Topology . 37
2.7 Benchmark queries. X and Y describe time points defined on a time unit.

SE = Single Entity, SU = Subgraph, G = Entire Graph, AS = Attribute Set,
AV = Attribute Value, T = Topology, SP = Single Point, MP = Multiple
Points, SI = Single Interval, MI = Multiple Intervals, C = Comparison,
A = Aggregation . 38

2.8 Size and creation time of graph database instances in Neo4j based on bench-
mark datasets . 40

2.9 Size of graph database instances in Neo4j based on real datasets. 43
2.10 Number of nodes and scale factors of graph database instances in Neo4j

based on real datasets. 43
2.11 Number of edges and scale factors of graph database instances in Neo4j

based on real datasets . 44

3.1 Comparative Analysis of Related Work . 57
3.2 Predicate Types. In Allen operators, T = [ts, tf [is a valid time interval.

Tu = [x, y[is a user-defined time interval where variables x and y are time
instants. 62

3.3 Matching predicates operator . 63
3.4 Evaluate predicate operator . 64
3.5 Pattern matching operator . 66
3.6 Transformation rules of our conceptual model into the logical model of

property graph. ∗tb is the start valid time instant of T and tf is the ending
valid time instant of T . 69

3.7 Translation rules of matchpredicates operator 74
3.8 Implementation of matchpattern operator 75
3.9 Implementation of matchpattern operator 76
3.10 Implementation of matchpredicates operator 77

xiii

3.11 Characteristics of datasets. Y= Yes, N= No, AV = Attribute Value, AS =
Attribute Set, T = Topology. 78

3.12 Queries on the Social Experiment Dataset 79
3.13 Queries on the Citibike Dataset . 80

4.1 Transaction database about customer transactions. The column TID refers
to the transaction identifier. 92

4.2 Sequence database about customer transactions. The column SID refers
to the sequence identifier. 93

4.3 Comparison of different pattern mining problems 102
4.4 Real datasets description . 125

5.1 Main topics addressed by the publications during my thesis 138

xiv

Chapter 1

Introduction

Contents
1 Context . 2
2 Problem Definition . 3

2.1 How can we incorporate temporal evolution in static graphs ? . . . 3
2.2 How can we explore graphs with temporal evolution? 3

3 Contributions . 4
4 Manuscript Outline . 4

1

1. CONTEXT 2

1 Context
The interconnectivity of real-world entities is a fundamental aspect of our contemporary
society. From the physical to the digital sphere of our society, we observe relationships,
interactions between entities everywhere. In the physical world, biological ecosystems
connect living organisms, transportation systems link cities, social systems (workplaces,
education, marketplaces) connect individuals, and so on. The widespread adoption of
digital technologies and platforms in our society has extended the interconnectivity of
real-world entities to the virtual realm. Information systems in organizations connect
employees, IoT devices connect physical objects of our daily lives (e.g., smart lights, smart
TVs), social platforms (e.g., Meta, LinkedIn) connect individuals, online marketplaces
(e.g., Amazon) connect consumers and sellers, and so on. Besides, our society is becoming
more interconnected by the day. According to the International Data Corporation, while
the number of interactions per digitally connected person per day worldwide was 218 in
2015, it is expected to be 20 times more in 2025, up to 4 758 (Reinsel et al., 2017).

Data generated everywhere by interconnected entities has led organizations to consider
a new form of data beyond the conventional forms (e.g., tabular data, relational data,
textual data). Data is no longer perceived as isolated pieces, but as interconnected pieces.
In this context, the concept of Graphs, a collection of vertices connected by edges, has
appeared as a natural way to represent real-world entities connected by relationships
(or interactions) (Angles and Gutierrez, 2018). Moreover, graphs unlock fresh analytical
perspectives of real-world scenarios by enabling the extraction of valuable information and
the discovery of hidden information from the relationships they encapsulate (Ghrab et al.,
2018). Gartner estimates that by 2025, graph technologies will be used in 80% of data
and analytics innovations, which allows facilitating decision-making across organizations
(Adrian and Jaffri, 2022). Currently, the ACTIVUS Group1 company, the industrial
financial partner of this Ph.D. thesis, leverages the power of graphs to represent its clients’
needs within its software solution and to provide graph-oriented analysis possibilities (e.g.,
retrieve linking chains between objects of networks).

Classic graphs are static and thus not enough in some real-world cases, since entities
and their relationships continually evolve over time. New entities may appear and disap-
pear over time. On online marketplaces, new sellers, products and consumers may regu-
larly enter or leave the market. Similarly, the relationships between entities may appear
and disappear over time. In social networks, individuals can add or delete friends. The
descriptive characteristics of entities may also change over time. In workplaces, informa-
tion systems record changes in their employee career changes (e.g. new skills, promotions,
new positions). Similarly, the descriptive characteristics of relationships between entities
may change over time. In transportation systems, the speed limit on a road segment
between two intersections might undergo changes over time. To meet these needs, it is
therefore important to integrate the concept of temporal evolution in Graphs. This opens
up new prospects for ACTIVUS Group and new research perspectives. This Ph.D. thesis
falls within this context.

1https://www.activus-group.fr/

2

https://www.activus-group.fr/

2. PROBLEM DEFINITION 3

2 Problem Definition
In response to the needs expressed in Section 1, we address in this thesis the following
research question: How can we enable analyses on graph data enriched with temporal
evolution? To answer this question, we identify the following scientific challenges.

2.1 How can we incorporate temporal evolution in static graphs
?

To incorporate the temporal evolution into graphs, we must address several fundamental
questions. First, as discussed before, in the real-world, temporal evolution may occur at
the level of entities, relationships and their descriptive characteristics. Consequently, it
requires determining which levels within the graph are subject to this temporal evolution.
In simpler terms, how do we associate the concept of evolution to the graph’s components,
such as vertices and edges? Next, we need to consider the abstraction levels that the graph
can embody while accounting for temporal evolution. These levels range from closely
mirroring the real-world to more technically oriented representations. It is important to
establish where the graph falls within this spectrum, as it influences how we interpret
temporal changes in the graph. Lastly, how can we manage the data changes in the
graph? Is it better to keep current and past graph data together, or to keep certain states
of the graph over time?

In the existing literature, some research works have partially answered these challenges.
They associate temporal evolution only on specific levels within the graph (Zaki et al.,
2016). Moreover, their approaches tend to be more technically oriented and may diverge
significantly from the representation of the real-world (Kosmatopoulos et al., 2016). Fi-
nally, to manage data changes over time, they often rely on the use of graph snapshots
taken at different points in time. However, this method prevents for having direct access
to information about the changes in graph data during analyses (Moffitt and Stoyanovich,
2017b).

2.2 How can we explore graphs with temporal evolution?
Users can explore a graph with temporal evolution to answer various questions about enti-
ties of a business context, connected by relationships and evolving over time. As starting
point of this exploration, they may want to find information in the graph with tempo-
ral evolution to answer simple business-oriented questions : ‘What?’, ‘Who?’, ‘Where?’,
‘When?’. To go further in the exploration, they may want to extract knowledge to ad-
dress more complex questions: ‘How ?’ questions. In this context, knowledge refers to
a combination of information pieces that serves for understanding causality or correla-
tions of phenomena (or events) within the graph with temporal evolution and for helping
decision-making (Bellinger et al., 2004; Rowley, 2007). The main challenge for knowl-
edge extraction in a graph with temporal evolution is to be able to combine information
from its multiple dimensions (evolution, topology, etc.) and other external information
to obtain some added-value (Fournier-Viger et al., 2020a).

In the existing literature, solutions have been designed on the one hand to find infor-
mation in graphs with temporal evolution. However, these solutions are often insufficient
in terms of their ability to manipulate the diverse dimensions of graphs with temporal evo-

3

3. CONTRIBUTIONS 4

lution. Moreover, they tightly dependent on specific technical environments and lack of a
user-oriented framework (Zhang et al., 2019; Debrouvier et al., 2021). On the other hand,
existing solutions for extracting knowledge in graphs with temporal evolution struggle to
fully capture the information from their several dimensions. This limitation diminishes
their capacity to provide comprehensive explanations about users’ business contexts.

3 Contributions
In response to our research question presented in Section 2, the objective of this thesis is to
propose solutions enabling analyses on graphs with temporal evolution. These solutions
are intended to be as generic as possible in order to serve a wider range of users and
applications. More precisely, we address the challenges presented in Section 2 as follows.

To enhance static graphs with temporal evolution, we propose a complete management
solution of graphs with temporal evolution, from their modelling to their implementation.
We introduce a conceptual (i.e., business-oriented) model, called Temporal Graph (TG),
which offers a means to represent real-world entities, relationships, and their evolution
across all levels. Our conceptual model associates evolution to each graph component
to enable the direct access to information about changes. Moreover, we propose an
implementation framework of our TG model to facilitate its translation into technical
environments.

To explore graphs with temporal evolution, we make two propositions. On the one
hand, we propose a complete querying solution for finding information in graphs with
temporal evolution, from a conceptual to an implementation framework. At the concep-
tual level, we propose conceptual operators providing the ability to fully manipulate the
diverse dimensions of a graph with temporal evolution to formulate business questions.
The implementation framework guarantees the easy translation of these conceptual oper-
ators into several alternatives of technical environments.

On the other hand, we offer a solution for knowledge extraction in a graph with tempo-
ral evolution. On the one hand, this solution consists of a pattern allowing to specify the
information pieces of a graph with temporal evolution to be combined to obtain knowl-
edge. This pattern fully captures the information from the multiple dimensions of the
graph with temporal evolution. On the other hand, it consists of an algorithm to extract
the pattern from the graph with temporal evolution.

Through this thesis, we have developed feasibility and efficiency studies in real-world
contexts. They will serve as a proof-of-concept to integrate a temporal layer at the level
of data representation and analysis of the graph-oriented software of ACTIVUS Group.

4 Manuscript Outline
The manuscript is organized as follows:

• In Chapter 2, first, we make a literature review on current models of graphs with
temporal evolution and their implementation. Second, we present our conceptual
model of TG. Third, we present the implementation framework of our conceptual

4

4. MANUSCRIPT OUTLINE 5

model of TG. Fourth, we evaluate the feasibility and usability of our TG model
through the analysis of a case study. Finally, we make some experiments to eval-
uate (i) the efficiency of the implementation of our TG model compared to classic
TG models, and (ii) the scalability of the implementation of our TG model across
different data volumes.

• In Chapter 3, first, we make a literature review on existing querying solutions for
graphs with temporal evolution. Second, we present our conceptual operators for
querying graphs with temporal evolution. Third, we present the implementation
framework of our conceptual operators through two abstraction levels: logical and
physical. Finally, we make experiments to verify the feasibility of this querying
solution using several benchmark queries over different application domains.

• In Chapter 4, first, we make a literature review on solutions in the Pattern Mining
field. This field proposes analytical techniques for extracting patterns (i.e., combi-
nation of information pieces) in graphs with temporal evolution using algorithms.
Second, we define a novel pattern and show its advantage compared to existing
patterns. Third, we present the algorithm we propose to extract our pattern from
a graph with temporal evolution similar to our TG model. Finally, we conduct ex-
periments to evaluate the scalability of the algorithm across different data volumes
and to evaluate the interest of the extracted patterns across different application
domains.

We illustrate in Fig 1.1 the full scope of this thesis.

5

4. MANUSCRIPT OUTLINE 6

M
O

D
EL

LI
N

G
 T

G

(C
ha

pt
er

 2
)

IM
PL

EM
EN

TA
TI

O
N

 O
F

TG
(C

ha
pt

er
 2

)

O
bt

ai
ne

d
ad

de
d-

va
lu

e
-

+
IN

FO
R

M
AT

IO
N

KN

O
W

LE
D

G
E

D
AT

A

K
N

O
W

LE
D

G
E

 D
IS

C
O

VE
RY

 IN
 T

G
(C

ha
pt

er
 4

)

M
A

PP
IN

G
 R

U
LE

S

O
PE

R
AT

O
R

S
PA

TT
ER

N
 M

IN
IN

G
 A

LG
O

R
IT

H
M

Q
U

ER
YI

N
G

 T
G

(C
ha

pt
er

 3
)

W
ha

t?
 W

ho
 ?

 W
he

re
 ?

 W
he

n
?

qu
es

tio
ns

H

ow
 ?

 q
ue

st
io

ns

M A N A G E M E N T A N A L Y S I S

IN
TE

R
C

O
N

N
EC

TE
D

 D
AT

A
W

IT
H

 E
VO

LU
TI

O
N

C
O

N
C

EP
TU

A
L

M
O

D
EL

R E A L W O R L D

Ti
m

e

Fi
gu

re
1.

1:
T

he
sis

Sc
op

e

6

Chapter 2

Modelling Temporal Graphs

Contents
1 Introduction . 8
2 Preliminary . 9

2.1 Graph . 9
2.2 Temporal Graph . 10

3 Related Work . 11
3.1 Conceptual level . 11
3.2 Logical level . 16
3.3 Physical level . 16
3.4 Summary . 17

4 Conceptual Modelling . 17
4.1 Time . 17
4.2 Temporal Graph . 18
4.3 Temporal Evolution . 20
4.4 Example . 21

5 Logical modelling . 27
6 Implementation of a Temporal Graph Dataset: a Case Study 30
7 Experimental Assessments . 35

7.1 Protocol . 35
7.2 Technical environment . 37
7.3 Summary . 39
7.4 Results of the efficiency evaluation of our model 39
7.5 Results of the scalability evaluation of our model 42

8 Conclusion . 43

7

1. INTRODUCTION 8

1 Introduction
Data modelling is a fundamental step for exploring interconnected data evolving over
time (Angles and Gutierrez, 2008). It serves the purpose of structuring and defining the
semantics of data. Traditionally, interconnected data are modelled using the concept of
Graphs, i.e., a collection of vertices connected by edges, as they naturally represent the
connections within data (Angles and Gutierrez, 2008). In the literature, several data
models extend Graphs to integrate the concept of temporal evolution. These data models
go by many different names such as ‘Temporal Graphs’, ‘Evolving Graphs’, ‘Time-varying
Graphs’ or ‘Dynamic Graphs’, among others (Holme and Saramäki, 2012; Debrouvier
et al., 2021). For simplicity, we will use the term ‘Temporal Graphs’ (TG) to refer to data
models that handle graphs with temporal evolution.

Current TG models come with certain limitations that hinder their use for data ex-
ploration purposes by users. First, current TG models associate temporal evolution to
specific levels of the graph to meet the requirements of specific applications: the topology
to capture the addition and removal of connections between data pieces, the attribute
value of vertices or edges to capture the update of data values, or the combination of
these different levels (Yang et al., 2014; Rossi et al., 2013; Aslay et al., 2018; Desmier
et al., 2012; Latapy et al., 2018; Zhao et al., 2020; Debrouvier et al., 2021; Campos et al.,
2016). As they are application-specific, they may not accommodate the diverse types of
changes required by various users and applications. Second, they generally keep track of
the changes in graph data by representing snapshots of a graph over different points in
time (Zaki et al., 2016). This tracking strategy does not allow direct access to information
about evolution at different graph levels (e.g., at the level of a vertex). Finally, current
TG models tend to be more technically oriented by considering implementation issues
(Kosmatopoulos et al., 2016). This limits their usability for real-world scenarios.

After modelling interconnected data evolving over time, it is necessary to implement
a TG data model into technical environments to effectively explore them. This imple-
mentation begins with a data storage infrastructure adapted for temporal graph data.
This ensures that data is organized and accessible for further use. Generally, the imple-
mentation of current TG models is tailored to particular applications and dependent on
specific technical environments (Ren et al., 2011; Khurana and Deshpande, 2013, 2016;
Gandhi and Simmhan, 2020; Ramesh et al., 2020; Xiangyu et al., 2020; Cattuto et al.,
2013; Huang et al., 2016). In a nutshell, current TG models are not generic enough either
in terms of evolution representation or implementation environments, to meet the needs
of a wide audience of users and applications.

In this chapter, the objective is to provide a complete management solution of tem-
poral graph data, ranging from a modelling to an implementation (Fig 2.1). The model
we propose must associate temporal evolution to all levels of the graph. Moreover, it
must propose a tracking strategy that allows direct access to information at all graph
levels. Finally, it should provide business-oriented concepts to align closely to real-world
scenarios. To do so, first, we review the literature on existing models of TG and their im-
plementation (Section 3). Second, we propose a conceptual model of TG and a graphical
notation to facilitate its exploitation by non-expert users (Section 4). Third, we propose
mapping rules to translate our conceptual model into the logical property-graph model
that is supported by several technical environments (Section 5). Fourth, we implement

8

2. PRELIMINARY 9

our conceptual model to evaluate the feasibility and usability through business analyses
(Section 6). Finally, we evaluate the efficiency and scalability of our solution through
experiments using benchmark and real-world datasets (Section 7).

CONCEPTUAL LEVEL

LOGICAL LEVEL

PHYSICAL LEVEL

MAPPING RULES

Figure 2.1: Our management solution of TG

2 Preliminary
Before getting to the heart of the matter, we have to define the concepts of graph and
temporal graph.

2.1 Graph
The concept of ‘Graphs’ originates from the Graph Theory field with Königsberg bridge
problem posed by Leonhard Euler in 17351. Graph Theory, a discrete mathematics sub-
branch, is ultimately the study of connections between things. These things are referred
‘vertices’ or ‘nodes’ which are interconnected by ‘edges’.

Definition 1. More formally, a graph is denoted G = (V, E) where V is a set of vertices
(or nodes) and E is a set of edges connecting vertices.

1https://interworks.com/blog/nlaurenti/2014/10/20/brief-history-graphs/

9

2. PRELIMINARY 10

The graph is used to model pairwise real-world relationships (with edges) between
real-world entities (with vertices) to solve mathematical problems. The Königsberg bridge
problem consists of modelling the Königsberg city as a graph (that is, land areas connected
by bridges) in order to solve path finding problems across the city. It is only since the
1990s that the concept of graph became popular in the field of data management, due to
the lack of hardware support for managing large graphs.

The first line of development of graphs concerns the data models of Graphs. They
extend the basic mathematical definition of Graphs: the labelled graph (a label is a
characteristic assigned to each vertex and edge), the RDF model (to represent intercon-
nected data of the World Wide Web), the property graph (a directed, labelled, attributed
multigraph) and so on (Angles and Gutierrez, 2018).

The second line of development starting from the 2000s encompasses the implemen-
tation of graph data in a dedicated technology: graph database management systems to
store and access graph data (e.g., Neo4j2), graph query languages to query graph data
(e.g., Gremlin3), graph-processing frameworks to provide analysis of large graph datasets
in a distributed environment (e.g., such as GraphX4), and so on. These developments have
significantly contributed to the field of graph data management, referring to all methods
and techniques to model, store, query and analyse graph data, which exist in various ap-
plications (i.e., social networks, recommendation systems, transportation systems, etc).

2.2 Temporal Graph
The integration of time dimension in the static graph allows capturing the evolution of its
components. In simpler terms, the concept of temporal evolution in a graph refers to the
changes that may occur on the different components of the graph over time (Zaki et al.,
2016). We therefore break down the concept of temporal evolution in different types,
presented in the following definition.

Definition 2. In a temporal graph, there exist three types of temporal evolution:

• the addition and removal of vertices (or edges), we denote as the evolution of
topology (Fig 2.2 a));

• the addition and removal of vertices’ (or edges’) descriptive characteristics, we de-
note as the evolution of attribute set (Fig 2.2 b));

• the update of vertices’ (or edges’) descriptive characteristics’ values, we denote as
the evolution of attribute value (Fig 2.2 c)).

The recognition of these changes has led the research community over the last few
decades to propose extensions of classic graph models called ‘Temporal Graphs’ (Holme
and Saramäki, 2012; Debrouvier et al., 2021) and to develop new graph technologies in
order to manage graphs with the temporal dimension (Cattuto et al., 2013; Huang et al.,
2016).

2https://neo4j.com/
3https://tinkerpop.apache.org/gremlin.html
4https://spark.apache.org/docs/latest/graphx-programming-guide.html

10

3. RELATED WORK 11

A

B

C

D

E

A

B

C

a) addition of vertices (or edges) in green
and removal of vertices (or edges) in red

D

E

b) addition of descriptive characteristics of vertices (or edges) in green
and removal of descriptive characteristics of vertices (or edges) in red

A

B
Z

C

D

R

R

E R

A
Y

B

C

R
S

R

R R

c) update of vertices' (or edges')
descriptive characteristics' values in green

A = 0
Y = 1

B = 1

C = 1

D = 0

R = 3

R=2

E = 1 R=5

A = 1
Y = 1

B = 1

C = 1

F = 0

R=4
S= 0

R=3

R=4 R=2

R = 2

F
R

F

Figure 2.2: Evolution in a graph between the time points t1 and t2

3 Related Work
In this section, we analyse existing work on management of temporal graph data, i.e., all
methods and techniques to model and to implement temporal graph data in a technical
environment, at three levels:

• Conceptual level: This level focuses on defining how the concepts of time and evolu-
tion are represented and understood within a domain, being the scope of the model;

• Logical level: The previous conceptual level is translated to another data model
which is technology-independent, meaning it can be implemented in various tech-
nical environments. The objective is to take into account the type of data storage
chosen for the implementation;

• Physical Level: The level shifts to the actual implementation of the previous logical
model in a chosen technical environment. This involves considerations of optimiza-
tion or efficiency.

3.1 Conceptual level
At the conceptual level, we distinguish two research axes in the literature: the modelling
of time and temporal evolution (Table 2.1).

11

3. RELATED WORK 12

3.1.1 Time Modelling

Defining the representation of time is a crucial step when modelling temporal graph data.
Temporal Graphs are a specialized type of graph models where time is an important
aspect. The representation of time in Temporal Graphs is directly inspired by existing
work in the field of temporal relational data management, which has been studied ex-
tensively since the 1980s (Johnston and Weis, 2010). There are therefore typically two
main approaches to represent time in the field of temporal graph modelling: point-based
and interval-based data models (Bohlen et al., 1998). These two approaches directly
impact the way the evolution (i.e., changes in the graph) is interpreted as well as the
implementation of the data model (at the level of storage and query processing).

Point-based approach The point-based data model is characterized by two features:
(i) snapshots of a graph are taken systematically (based on pre-defined rules to capture),
with the timestamp of the capture assigned to each snapshot, and (ii) snapshots are
taken in a global manner (capturing all data of the graph). In other terms, time is
represented through the timestamps at which each snapshot is taken. As a result, we
obtain a representation of the states of a graph at successive discrete timestamps (Desmier
et al., 2012; Rossi et al., 2013; Yang et al., 2014; Aslay et al., 2018). It is called the
‘sequence of graph snapshots’ (Debrouvier et al., 2021). It is the classic approach to model
temporal graph data. However, the snapshot-based approach has certain drawbacks:

• Time-window size effects: The choice of the time-window for constructing the
sequence of snapshots can significantly impact the representation of a temporal
graph.

– Window size selection : Selecting an appropriate time-window size is not
always straightforward. It is a research domain in itself, and the choice can
affect the granularity of the temporal information captured (Holme, 2015);

– Loss of temporal information : If the time window is too large, we converge
towards a static graph representation where all data is aggregated and all
temporal information is then lost (Nicosia et al., 2013);

– Data redundancy: Conversely, if the time-window is too small, the snapshots
in the sequence may exhibit similarities between them, and then capturing
redundant data (Kosmatopoulos et al., 2016). Besides, at the implementation
step, data redundancy can lead to high data volume regarding storage.

• Indirect access to changes: Accessing information about changes in a temporal
graph involves comparing consecutive snapshots to identify additions, deletions, or
modifications of vertices and edges (Moffitt and Stoyanovich, 2017b). Besides, at the
implementation step, this process can be computationally intensive and complex,
impacting query performance.

• Lack of finer data granularity: Snapshots are taken at the level of the entire
graph, which means that changes are tracked from a global perspective. This can
be a limitation when we need to analyse the evolution of specific vertices or edges
(Kosmatopoulos et al., 2016).

12

3. RELATED WORK 13

Interval-based approach Some works propose the interval-based modelling approach
that differ from the point-based modelling approach (Campos et al., 2016; Zhao et al.,
2020; Debrouvier et al., 2021). In the interval-based approach, each graph component
(i.e. vertex or edge) is associated with a time interval. In other terms, time is represented
by time intervals attached to each graph component, indicating the stability period of
its state (Jensen et al., 1992). Compared to the point-based approach, the interval-based
approach has therefore a finer data granularity which provides the following advantages :

• Data redundancy reduction: As each graph component’s state is represented
within its own time interval, there is a reduction in data redundancy compared to
the point-based approach. Besides, at the implementation step, this can lead to
more efficient storage, especially when multiple graph components share the same
state over extended periods;

• Direct access to changes: The interval-based approach allows for direct access to
information about changes within the graph. Besides, at the implementation step,
The model simplifies queries related to the evolution of the temporal graph, as we
can directly access change information within specific intervals;

• Finer data granularity: Each graph component can change at its own rate, mak-
ing it more adaptable to scenarios where different parts of the graph evolve at
different speeds. We can therefore track changes from a local perspective (i.e., from
a vertex’s or edge’s viewpoint).

In conclusion, interval-based models are more promising than point-based models.
However, the querying aspect must not be neglected (Bohlen et al., 1998).

3.1.2 Temporal Evolution Modelling

The modelling of temporal graph data implies to represent the concept of temporal evo-
lution. As presented in Section 2.2, temporal evolution breaks down into three types of
evolution: (i) the evolution of topology, (ii) the evolution of attribute set and, (iii) the
evolution of attribute value.

Some temporal graph models represent one above-mentioned evolution type. Yang
et al. (2014) focus on the evolution of topology through the addition and removal of
edges only. Rossi et al. (2013); Aslay et al. (2018); Latapy et al. (2018) focus also on the
evolution of topology through the addition and removal of both vertices and edges.

Some temporal graph models include two evolution types. Desmier et al. (2012) repre-
sent the evolution of topology through the addition and removal of edges and the evolution
of attribute values through the changes in the value of vertices’ attributes. Zhao et al.
(2020)’s data model embeds both the evolution of topology through the addition and
removal of edges and the evolution of attribute values through the changes in the value
of edges’ attributes.

Finally, some works try to take into account all evolution types in the proposed tem-
poral graph models (Debrouvier et al., 2021; Campos et al., 2016). However, their models
rely on a flat structure. They create new vertices for each descriptive attribute of the ver-
tices of the original graph, and ignore the attributes of edges. So, the changes of attribute
set and attribute value are not managed for edges.

13

3. RELATED WORK 14

Table 2.1: Temporal graph models at the conceptual level. The capital letters in the table
are defined as follows: P = Point-based data model, I = Interval-based data model, V =
Vertex, E = Edge

M
odel

T
im

e
A

pproach
E

volution
type

Topology
Attribute

value
Attribute

set

Evolving
graph

(Yang
etal.,2014)

P
E

D
ynam

ic
network

(Rossietal.,2013;A
slay

etal.,2018)
P

V
/E

D
ynam

ic
attributed

graph
(D

esm
ieretal.,2012)

P
E

V

Stream
graph

(Latapy
etal.,2018)

I
V

/E

Attributed
D

ynam
ic

G
raph

(Zhao
etal.,2020)

I
E

E

Tem
poralproperty

graph
(D

ebrouvieretal.,2021;Cam
posetal.,2016)

I
V

/E
V

V

O
urm

odel
I

V
/E

V
/E

V
/E

14

3. RELATED WORK 15

Table 2.2: Implementation of temporal graph models at the physical level

R
esearch

axis
W

ork
P

urpose
Setting

D
ata

redundancy
reduction

Ren
etal.(2011)

Snapshotstorage
and

retrieval
Centralized

K
hurana

and
D

eshpande
(2013)

Snapshotstorage
and

retrieval
D

istributed

K
hurana

and
D

eshpande
(2016)

H
istoricalgraph

storage
and

analysis,N
ode-centric

m
odel

D
istributed

G
andhiand

Sim
m

han
(2020)

Tem
poralgraph

storage
and

algorithm
s,Interval-centric

m
odel

D
istributed

Ram
esh

etal.(2020)
Tem

poralproperty
graph,Interval-centric

m
odel,Tem

poralpath
queries

D
istributed

X
iangyu

etal.(2020)
Snapshotstorage

and
retrieval,D

istribution
ofhistoricalqueries

Centralized

Im
plem

entation
environm

ent
Cattuto

etal.(2013)
M

odelling,storing
and

querying
tim

e-varying
graphs,N

eo4j
Centralized

H
uang

etal.(2016)
Tem

poralgraph
data

m
anagem

entsystem
,ACID

transactions,N
eo4j

Centralized

15

3. RELATED WORK 16

3.2 Logical level
Traditionally, the translation between the conceptual level and the logical level is framed
by rules, such as in the relational data management domain.

In classic graph data management, two common logical data models are mentioned: the
property graph model and the RDF (Resource Description Framework) model. They have
gained widespread adoption and support within the industry. They are indeed supported
by various technical environments (Angles and Gutierrez, 2018).

The property graph model is used for representing entities and relationships. It involves
vertices (or nodes) connected by edges (relationships), with attributes stored in both
vertices and edges (Angles, 2018). The RDF model focuses on representing semantic
links between data using vertices (resources) linked by edges (triples). It does not allow
nesting data (i.e., attributes) within vertices and edges, but is highly suitable for semantic
data representation (Lassila and Swick, 1998).

3.3 Physical level
At the physical level, we distinguish two research axes in the literature: data redundancy
reduction and implementation environment (Table 2.2).

Regarding the first research axis, snapshots inevitably introduce data redundancy since
consecutive snapshots share in common vertices and edges that do not change over time
Kosmatopoulos et al. (2016). Processing snapshots causes redundant computation, limit-
ing scalability Gandhi and Simmhan (2020). In response to this issue, Ren et al. (2011)
propose a framework to construct a few representative graphs based on similarity. Khu-
rana and Deshpande (2013) introduce an in-memory data structure and a hierarchical
index structure to retrieve efficiently snapshots of a temporal graph. Xiangyu et al.
(2020) proposes a strategy to determine when snapshots should be materialized based on
the distribution of historical queries. However, these optimization techniques snapshots
always accept some data redundancy. To avoid data redundancy, some works recommend
using interval-based data model completely in break with snapshots. However, they are
oriented towards distributed computing, so do not provide a conceptual-oriented view
(Khurana and Deshpande, 2016; Gandhi and Simmhan, 2020; Ramesh et al., 2020).

Regarding the second research axis, some works focus on evaluating the performance
of graph data management systems supporting temporal graph models via experimental
assessments. Some experiments rely on RDF triple stores, such as Virtuoso5 or TDB-
Jena6, to store the evolution of Linked Open Data (LOD) in the Semantic Web area
(Roussakis et al., 2015; Pernelle et al., 2016). However, it is already known that graph
oriented NoSQL databases are more efficient than RDF triple stores when querying RDF
data (Ravat et al., 2019). It is necessary to see if these NoSQL databases are as efficient
in the context of temporal graphs. The authors in Cattuto et al. (2013) use Neo4j to store
the time-varying networks and to retrieve specific snapshots. The authors in Huang et al.
(2016) have developed a graph database management system based on Neo4j to support
graphs changing in the value of vertices’ and edges’ attributes, but do not address the
changes in graph topology.

5https://virtuoso.openlinksw.com/
6https://jena.apache.org/documentation/tdb/

16

https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/

4. CONCEPTUAL MODELLING 17

3.4 Summary
We observe in the previous related work that they hardly separate the modelling and
implementation details of temporal graph data. They therefore lack of comprehensive
overview of graph data and their temporal evolution and reproducibility in various con-
texts. To solve this problem, we will propose a complete solution divided in three ab-
straction levels: conceptual, logical and physical.

At the conceptual level, we propose a data model using the interval-based approach
for time modelling, since it presents several advantages over the point-based approach.
Moreover, it includes all possible evolution types of graph data (topology, attribute set
and attribute value) to be generic in terms of evolution representation.

At the logical level, we propose direct mapping rules to translate our conceptual model
into the property graph model. It allows benefiting from established technologies and
practices that are compatible with the property graph model. Introducing a new, pro-
prietary logical model from scratch can lead to compatibility challenges with existing
technologies.

At the physical level, we propose to implement the property graph model into a graph-
oriented NoSQL data store and to evaluate its performance in terms of storage and query-
ing.

4 Conceptual Modelling
In this chapter, we define a conceptual modelling of temporal graph data. First, we define
the concept of time in our model (Section 4.1). Second, we define our temporal graph
(Section 4.2). Third, we describe the evolution mechanism in our proposed concepts
(Section 4.3). Finally, we illustrate the proposed concepts in an example (Section 4.4).

4.1 Time
Time can be schematized as a domain denoted by Ω, which is linear and discretized by
ordered natural numbers corresponding to their succession in time (Gandhi and Simmhan,
2020; Ramesh et al., 2020). Each time point corresponds to an instant.

Definition 3. A time unit is an atomic increment in time defined by some user (Gandhi
and Simmhan, 2020; Ramesh et al., 2020). It is defined by a mapping function T (x) ⊂ 2N.
T (x) allows associating a time interval, indexed by x ∈ N, to a set of instants (Fig 2.3).
A time unit has therefore the following characteristics (Wang et al., 1993):

• 0 ∈ T (0) {each time unit starts from the beginning};

• ∀i, j ∈ N, i ̸= j → T (i) ∩ T (j) = ∅ {two continuous blocks do not overlap};

• ∀i ∈ N,∃j ∈ N such that i ∈ T (j) {each time unit covers the whole timeline, i.e.,
N}.

The most common units are corresponding to the usual partitions of calendars are:
millennium, century, year, month, day, week, hour, second, etc. A time unit can be the
partition of another such as days for months.

17

4. CONCEPTUAL MODELLING 18

Definition 4. A time interval defines a set of instants between two instant limits in time.
We denote it T = [tb, tf] where, tb, tf ∈ Ω which indicates a time interval beginning at
tb and extending to tf . The duration of the time interval is tf − tb. A time instant is
therefore a time interval T = [tb, tf] where tb = tf and tb, tf ∈ Ω. It has no duration
relatively to its time unit.

In our model, we use the concept of the valid time interval.

Definition 5. A valid time interval is a time interval, T = [tb, tf], which is associated to
a graph component indicating its stability period (i.e., the period during which it does not
change) (Jensen et al., 1992).

Figure 2.3: Time modelling.

4.2 Temporal Graph
We define a conceptual model, named Temporal Graph, for representing graph data that
changes over time. More specifically, we propose concepts to model entities of a business
context that can change over time, as well as the relationships between these entities.

We describe an entity of a business context that changes over time with the concept of
temporal entity. A temporal entity is composed of several states to represent its evolution
over time.

Definition 6. A temporal entity, called ei, is defined by ⟨lei , idei , Sei , T ei⟩ where lei is
the label of ei, idei is the identifier of ei, Sei = {sei

1 , ..., sei
m} is the non-empty set of

states of ei and T ei is the valid time interval of ei. Each state sei
j ∈ Sei is defined

by sei
j = ⟨Asj , V sj , T sj⟩ where Asj = {aei

1 ; ...; aei
n } is the set of attributes of sei

j , V sj =
{v(aei

1); ...; v(aei
n)} is the attribute values and T sj is the valid time interval of sei

j . Each
v(aei

q) ∈ V sj is the value of each attribute aei
q ∈ Asj .

Definition 7. The valid time interval of each state of a temporal entity sei
j ∈ Sei is defined

by T sj = [tb, tf] where tb ̸= ∅ and tf ̸= ∅. The valid time interval of each temporal entity
ei is obtained by calculation:

T ei = ∪j=m
j=1 T sj where sj ∈ Sei

A relationship between two entities of a business context does not have an independent
existence. Its existence depends on the entities it links. We describe a relationship between

18

4. CONCEPTUAL MODELLING 19

two entities that changes over time with the concept of temporal relationship. A temporal
relationship is composed by several states to represent its evolution over time.

Definition 8. A temporal relationship, called ri, is defined by ⟨lri , (sk, sj), Sri , T ri⟩ where
lri is the label of ri, (sk, sj) is the couple of entity states ri links, Sri = {sri

1 , ..., sri
u } is the

non-empty set of states of ri and T ri is the valid time interval of ri. Each state sri
b ∈ Sri

is defined by sri
b = ⟨Asb , V sb , T sb⟩ where Asb = {ari

1 ; ...; ari
w} is the set of attributes of sri

b ,
V sb = {v(ari

1); ...; v(ari
w)} is the attribute values and T sb is the valid time interval of sri

b .
Each v(ari

d) ∈ V sb is the value of each attribute ari
d ∈ Asb.

Remark 1. The valid time interval of each state of a temporal relationship sri
b ∈ Sri is

defined by T sb ⊆ (T sk ∩ T sj) where T sk is the valid time of the entity state sk and T sj is
the valid time of the entity state sj. The valid time interval of each temporal relationship
ri is obtained by calculation:

T ri = ∪b=u
b=1T sb where sb ∈ Sri

Definition 9. L describes a finite set of labels. A label l ∈ L describes the semantic of
entities (or relationships). Therefore, their definition is domain-specific. A label groups
an entity class (or relationship class). Conversely, an entity (or relationship) has a unique
label. Unlabelled entities (or relationships) are semantically indistinct.

As a result of the previous definitions, our Temporal Graph is defined as follows:

Definition 10. A Temporal Graph, called TG, is defined by TG = ⟨E, R, T, ρ, λ⟩ where:

• E = {e1, ..., eg} is a finite set of temporal entities;

• R = {r1, ..., rh} is a finite set of temporal relationships;

• T is the timeline of the temporal graph. It only depends on the valid time intervals
of temporal entities, as they have an independent existence. So it is obtained by
calculation:

T = ∪i=g
i=1T ei where ei ∈ E (2.1)

• ρ : R → (E × E) is a function that associates each state of each relationship in R
with a pair of entity states in E;

• λ : (E ∪R)→ SET +(L) 7 is a function that associates each entity (or relationship)
in the temporal graph with a label from L.

Definition 11. The schema of the Temporal Graph is a tuple schema(TG) = (LE, LR, ϕ)
where:

• LE ⊂ L is a finite set of labels;

• LR ⊂ L is a finite set of labels, satisfying that LE and LR are disjoint;
7SET + denotes a non-empty set

19

4. CONCEPTUAL MODELLING 20

has
1,N

1,
1

be
lo

ng
s

to
2,2 links

has
0,N

1,1 has

1,1
 ha

s
has 1,1

a label

an entityan identifier 1,1 has

a state

a valid time attribute-value
pair

is associated to 1,N

a valid time

1,1 h
as

is calculated

by the union of 1,N

has
1,N

1,
1

be
lo

ng
s

to

has
0,N

ha
s

1,
1

a label

a relationship

a state

attribute-value
pair

is associated to 1,N

Valid time

a valid time

has 1,1

is calculated
by the union of 1,N

Figure 2.4: Metamodel of our conceptual modelling

• ϕ : (LE, LE)→ SET +(LR) is a function that defines the finite and non-empty subset
of relationship labels from LR allowed between a given pair of entity labels.

The metamodel in Fig 2.4 presents the relationships (edges) between all the concepts
(vertices) of our conceptual modelling by specifying the cardinalities of these relationships.
We present the graphical notation of our conceptual modelling in Fig 2.7 in the following
section.

4.3 Temporal Evolution
As seen in the conceptual modelling above, we describe the temporal evolution of entities
and their relationships though the concept of states. In this section, we precise how we
manage the three types of evolution: (i) the evolution in topology, (ii) the evolution in
attribute set and (iii) the evolution in attribute value.

The management of the topology evolution of entities is presented in Table 2.3. When
an entity ei is added in the modelled business context, a state of the entity sj is created,
and its valid time interval is T ei = T sj = [taddition, +∞) where taddition is the time instant
of the addition. When an entity ei is removed from the modelled business context, the
valid time interval of its last state is updated to T sm = [tb, tremoval[with tremoval the time
instant of the removal and tb < tremoval. Similarly, the valid time interval of ei is updated
to T ei = T ei ∪ {T sm}.

20

4. CONCEPTUAL MODELLING 21

Table 2.3: Evolution of topology in TG

Input: TG = ⟨E, R, T ⟩
Output: TG = ⟨E ′, R′, T ′⟩
Actions: 1. If an entity ei appears at taddition Then

2. sm = CreateState(Asj , V sj , [taddition, +∞))
3. Sei ←− sm

4. ei = CreateEntity(lei , idei , Sei , T ei)
5. E ← E ∪ {ei}
6. Else If ei ∈ E is removed at tremoval Then
7. sm = GetLastState(ei)
8. T sm = UpdateEndT ime(tremoval)
9. End If
10. If a relationship ri appears at taddition Then
11. sm = CreateState(Asj , V sj , [taddition, +∞))
12. Sri ←− sm

13. ri = CreateRelationship(lri , (sk, sj), Sri , T ri)
14. R← R ∪ {ri}
15. Else If ri ∈ R is removed at tremoval Then
16. sm = GetLastState(ri)
17. T sm = UpdateEndT ime(tremoval)
18. End If

The management of the evolution in attribute set and attribute value of entities is
presented in Table 2.4. A temporal entity changes according to the addition and/or
removal of a new attribute and/or the update in an attribute value. Two states of the
same entity have different attribute sets and/or different attribute values. When a new
attribute is added/removed or an attribute value changes, a new state of the entity is
created instead of overwriting the old state version. The valid time interval of the old
state version, sj, is updated to T sj = [tb, tchange[where tchange is the time instant of
the change and tb < tchange. The valid time interval of the new state version, sj+1, is
T sj+1 = [tchange, +∞).

Similar to entities, relationships can evolve in terms of topology, attribute value or
attribute set. So to capture the evolution of temporal relationships, we apply the same
evolution management.

4.4 Example
The difficulty in exploiting a dataset with temporal graph data is to follow how data
relates to each other and how data changes over time. To do so, such dataset can be
ideally represented as a temporal graph using our conceptual model. In the following,
we present the modelling of a dataset of an e-commerce activity into our temporal graph
representation and present its advantage compared to a snapshot-based representation.

In our business use case, customers view, add to cart and buy items on an e-commerce
website. They can make a new action (i.e. view, add to cart and buy) on items each
minute. They can modify characteristics of their cart over time by changing items’ quan-
tity or by adding a discount code. The website adds new items over time. Moreover, it

21

4. CONCEPTUAL MODELLING 22

Table 2.4: Evolution of attribute set and attribute value in TG

Input: TG = ⟨E, R, T ⟩
Output: TG = ⟨E ′, R′, T ′⟩
Actions: 1. If a new attribute ai of ei is added at tchange Then

2. sj = GetLastState(ei)
3. T sj = UpdateEndT ime(tchange)
4. sj+1 = CreateState(Asj ∪ {ai}, V sj ∪ {v(ai)}, [tchange, +∞))
5. Else If an attribute ai of ei is removed at tchange Then
6. sj = GetLastState(ei)
7. T sj = UpdateEndT ime(tchange)
8. sj+1 = CreateState(Asj \ {ai}, V sj \ {v(ai)}, [tchange, +∞))
9. Else If the attribute value v(ai) of ei changes to
v′(ai) at tchange Then
10. sj = GetLastState(ei)
11. T sj = UpdateEndT ime(tchange)
12. V sj+1 ←− V sj \ {v(ai)} ∪ {v′(ai)}
13. sj+1 = CreateState(Asj , V sj+1 , [tchange, +∞))
14. End If
15. If a new attribute ai of ri is added at tchange Then
16. sj = GetLastState(ri)
17. T sj = UpdateEndT ime(tchange)
18. sj+1 = CreateState(Asj ∪ {ai}, V sj ∪ {v(ai)}, [tchange, +∞))
19. Else If an attribute ai of ri is removed at tchange Then
20. sj = GetLastState(ri)
21. T sj = UpdateEndT ime(tchange)
22. sj+1 = CreateState(Asj \ {ai}, V sj \ {v(ai)}, [tchange, +∞))
23. Else If the attribute value v(ai) of ri changes to
v′(ai) at tchange Then
24. sj = GetLastState(ri)
25. T sj = UpdateEndT ime(tchange)
26. V sj+1 ←− V sj \ {v(ai)} ∪ {v′(ai)}
27. sj+1 = CreateState(Asj , V sj+1 , [tchange, +∞))

adds new characteristics to items and updates the value of characteristics over time.

To model such e-commerce data, we propose a two-step approach :

• The first step consists of identifying the entities and relationships that model the
business needs. In our conceptual model, each entity and relationship classes of a
business domain are modelled through the concept of labels.

• The second step consists of identifying the evolution of the various components of
the previous schema. In our conceptual model, each entity of a business domain that
evolves over time is modelled through the concept of temporal entity. Each relation-
ship of a business domain that evolves over time is modelled through the concept of
temporal relationship. All descriptive information of entities and relationships of a
business domain are modelled through the concept of attributes. We manage their
evolution, in terms of topology - attribute set - attribute value, notably through the

22

4. CONCEPTUAL MODELLING 23

Figure 2.5: Schema of the e-commerce dataset

concept of states.

In the first step, we identify two entity classes (customer and item) and three relation-
ship classes (view, add to cart and buy). So, the formal description of the temporal graph
schema is schema(TG) = (LE, LR, ϕ(LE, LE) where:

• LE = {CUSTOMER, ITEM}

• LR = {V IEW, ADDTOCART, BUY }

• ϕ(CUSTOMER, ITEM) = {V IEW, ADDTOCART, BUY }

We graphically construct the schema of the dataset in Fig 2.5.

In the second step, we understand that customers do not change over time, contrary
to items. Items evolve over time in terms of their topology, attribute set and attribute
value. Similarly, the relationships ‘add to cart’ evolve over time in terms of their topology,
attribute set and attribute value. The relationships ‘view’ and ‘buy’ evolve over time in
terms of their topology only. We specify these evolution types on the schema of the
dataset in Fig 2.5. According to our conceptual modelling, customers and items become
temporal entities. Actions of customers on items (view, add to cart and buy) become
temporal relationships. The characteristics of customer, items and carts are translated
into attributes. We illustrate in details the modelling of the evolution of these entities
and relationships through the following business scenarios in the dataset.

A customer identified C1 and called ‘Smith’ never experiences a change in its char-
acteristics since the creation of its account. If we use the snapshot-based approach, we
consider that data are captured at a regular time interval, for instance each day. There-

23

4. CONCEPTUAL MODELLING 24

Figure 2.6: Evolution management of the e-commerce dataset with the snapshot-based
model

fore, the vertex representing the customer is repeated at each snapshot, as we can see in
Fig 2.6. The advantage of our conceptual model is to represent this customer by only one
state, numbered 1 in Fig 2.7, with a start valid date corresponding to the creation date
of its account and no ending date. The formal description of this customer according to
our conceptual model is given as follows :

• e1 = ⟨CUSTOMER, C1, {s1}, [01/01/2021, +∞)⟩

• s1 = ⟨{name}, {Smith}, [01/01/2021, +∞)⟩

The website adds new items over time. This concerns notably the item ‘Color printer
ink’ identified as I1. At its publication on the website, the price of I1 is 30. Two days
after I1’s publication, its price has decreased. This refers to the evolution in attribute
value of I1. The next day, the website has added a new descriptive information (special
gift) to I1. This refers to the evolution in attribute set of I1. With the snapshot-based
approach in Fig 2.6, as I1 does not change during two days, the initial state of I1 is
repeated in two snapshots. In our model, a state is generated at each change. The
publication of I1 generates the first state of I1 numbered 2 in Figure 2.7, with a valid
time interval beginning at the date of its publication. The change in I1’s attribute value
results in the new state, numbered 3, with a valid time interval beginning at the date of
the price decrease. The change in I1’s attribute set results in the new state numbered 4,
with a valid time interval beginning at the date of the attribute addition. Therefore, this
produces only 3 vertices for I1 in our model instead of 4 vertices in the snapshot-based
approach. The formal description of this item according to our conceptual model is given
as follows:

• e2 = ⟨ITEM, I1, {s2, s3, s4}, {[01/01/2021, 02/01/2021], [03/01/2021, 03/01/2021],

24

4. CONCEPTUAL MODELLING 25

[04/01/2021, +∞)})⟩

• s2 = ⟨{current price, name}, {30, Color printer ink}, [01/01/2021, 02/01/2021]⟩

• s3 = ⟨{current price, name}, {25, Color printer ink}, [03/01/2021, 03/01/2021]⟩

• s4 = ⟨{current price, name, special gift}, {25, Color printer ink, Black printer
ink}, [04/01/2021, +∞)⟩

Customers can make a new action on items each minute. This refers to the evolution
in topology of relationships between customers and items. The customer C1 viewed I1
once during the day 02/01/2021 at 10:30. During the day 04/01/2021, the customer
C1 viewed I1 at 10:30, added it to cart at 10:33, modified its cart at 10:37 and then
bought it at 10:40. As we can see in Fig 2.6, a snapshot-based approach would lose the
temporal information because it does not capture the order of actions or their timestamps.
This is because time granularity is at the level of the entire graph and not each graph
component (vertex or edge). On the contrary, our model keeps all temporal information
since time granularity is at the level of each graph component. So the two actions V IEW
and ADDTOCART are represented by temporal relationships with at least one state in
Fig 2.7.

The characteristics of customers’ actions can be updated. During the day 04/01/2021,
the customer C1 has modified the quantity of the item I1 in his cart following a discount
code he received from the website. He has added his discount code to his cart. This refers
respectively to the evolution in attribute value and set of the relationship ADDTOCART
between C1 and I1. As said previously, the order of the information is lost in the snapshot-
based approach. In our model, the change in the attribute set and value of the relationship
ADDTOCART between C1 and I1 generates two states in Fig 2.7: (i) a state numbered
7 which is the initial state of the relationship before changes and (ii) a state numbered 8
with one more unit of I1’s quantity and a discount code. Then, the customer C1 bought
the item I1. This generates the state numbered 9. The formal description of customers’
actions is as follows:

• r1 = ⟨V IEW, (s1, s2), {s5}, [02/01/2021 10 : 30, 02/01/2021 10 : 30]⟩

• r2 = ⟨V IEW, (s1, s4), {s6}, [04/01/2021 10 : 30, 04/01/2021 10 : 30]⟩

• r3 = ⟨ADDTOCART, (s1, s4), {s7, s8}, {[04/01/2021 10 : 33, 04/01/2021 10 : 33],
[04/01/2021 10 : 37, 04/01/2021 10 : 37]}⟩

• r4 = ⟨BUY, (s1, s4), {s9}, [04/01/2021 10 : 40, 04/01/2021 10 : 40]⟩

• s5 = ⟨∅, ∅, [02/01/2021 10 : 30, 02/01/2021 10 : 30]⟩

• s6 = ⟨∅, ∅, [04/01/2021 10 : 30, 04/01/2021 10 : 30]⟩

• s7 = ⟨{quantity}, {1}, [04/01/2021 10 : 33, 04/01/2021 10 : 33]⟩

• s8 = ⟨{quantity, discount code}, {2, Summer}, [04/01/2021 10 : 37, 04/01/2021 10 :
37]⟩

• s9 = ⟨{quantity}, {2}, [04/01/2021 10 : 40, 04/01/2021 10 : 40]⟩

25

4. CONCEPTUAL MODELLING 26

1

3

4
2

5

6

7

8

9

Figure 2.7: Evolution management of the e-commerce dataset with our temporal graph
model

26

5. LOGICAL MODELLING 27

Figure 2.8: Extended example

Through this example, the following advantages of our conceptual model are retained.
First, our conceptual model provides a comprehensive overview of graph data with tem-
poral evolution to users (decision makers, analysts, etc.). It captures, in a finer way,
the different types of evolution of entities and relationships (topology, attribute set and
attribute value). Moreover, it provides a graphical notation that allows for easily repre-
senting the topology of data (vertices connected by edges), the data embedded within the
topology (attributes) and their temporal evolution (states).

Second, our conceptual model represents the temporal evolution of graph data in a
synthetic manner. No information is lost or redundant after the modelling process. If
we had adopted the snapshot-based approach, we would have 4 more vertices than our
model.

Finally, our conceptual model is flexible in the way of modelling business requirements.
Suppose now that the dataset includes a customer that adds to cart the same item (same
state of item) at two different dates for two different orders. We can easily do that by
adding an attribute ‘order’ for each state of ADDTOCART relationship between the
same customer (same state of customer) and the same item (same state of item). We
illustrate this case in Fig 2.8.

5 Logical modelling
The objective of logical modelling is to take into account the type of data storage chosen
for the implementation. In our case, we choose the logical property graph model because
most of graph-oriented NoSQL data stores, such as Neo4j, are designed to store property
graphs. Our objective is then to translate our conceptual temporal graph into a logical
property graph.

According to Angles (2018), a property graph is defined as PG = ⟨N, D, η, Λ, Σ⟩ where
N is a finite set of nodes (also called vertices), D is a finite set of edges, η : D → (N ×N)
is a function that associates each edge in D with a pair of nodes in N , Λ : (N ∪ D) →
SET +(L) is a function that associates a node (or an edge) with a set of labels from L,
and Σ : (N ∪ D) × P → SET +(V) is a function that associates nodes (or edges) with

27

5. LOGICAL MODELLING 28

Conceptual Temporal graph Logical Property graph
a temporal entity ei a set of nodes

a label of a temporal entity lei a label
a temporal entity’s identifier idei a property

a valid time interval of a temporal entity T ei by query
a state of a temporal entity sj a node

an attribute of a temporal entity aei
q a property

a valid time interval of an entity state T sj two properties∗
a temporal relationship ri a set of edges connecting nodes

a label of a temporal relationship lri a label
the couple of entity states (sk, sj) that links a temporal relationship two nodes

a valid time interval of a temporal relationship T ri by query
a state of a temporal relationship sb an edge

an attribute of a temporal relationship ari
d a property

a valid time interval of a relationship state T sb two properties∗

Table 2.5: Mapping rules of the conceptual temporal graph into the logical property
graph. ∗startvalidtime and endvalidtime.

properties. Each property is a key-value pair (p, v) where p is the property name and v
the property value.

We propose a transformation process between our conceptual temporal graph and a
logical property graph via a generic algorithm (Algorithm 1). The transformation process
receives our temporal graph TG as input and returns the property graph PG. For each
state s of each temporal entity e in G, a node is created in PG with a label corresponding
to the label of e and a set of properties corresponding to: the identifier of e, the attributes
of s, the start and end instants of the valid time interval of s. For each state s of each
temporal relationship r in TG, an edge is created in PG by connecting the two nodes
corresponding to two states that r links, with a label corresponding to the label of r and
a set of properties corresponding to: the attributes of s, the start and end instants of the
valid time interval of s. As a result of the Algorithm 1, we obtain the transformation
rules presented in Table 2.5.

We graphically illustrate this transformation process through the mapping of the tem-
poral graph in Figure 2.7 into the property graph in Figure 2.9. The resulting property
graph is composed of 4 nodes and 5 edges. We notice that for the item in Figure 2.7, 3
nodes are needed to represent its changes. Similarly, we observe that 2 edges are required
to represent the changes of the ADDTOCART relationship.

28

5. LOGICAL MODELLING 29

Algorithm 1: Mapping algorithm: from conceptual temporal graph to logical
property graph

Input: Temporal Graph: TG = ⟨E, R, T, ρ, λ⟩
Output: Property Graph PG = ⟨N, D, η, Λ, Σ⟩
/* create the Property Graph */

1 N ← ∅
2 D ← ∅
3 foreach temporal entity ei ∈ E do
4 nodeLabel← getEntityLabel(ei)
5 pid ← createProperty(“id”, getEntityId(ei))
6 foreach state sj ∈ Sei do
7 nodeProperties← ∅
8 pT start ← createProperty(“startvalidtime”, getStartV alue(T sj))
9 pT end ← createProperty(“endvalidtime”, getEndV alue(T sj))

10 nodeProperties← nodeProperties ∪ {pid, pT start, pT end}
11 foreach attribute a ∈ Asj do
12 patt ← createProperty(“a”, getAttributeV alue(a))
13 nodeProperties← nodeProperties ∪ {patt}

/* create a node with a set properties */
14 N ← N ∪ createNode(nodeLabel, nodeProperties)

15 foreach temporal relationship ri ∈ R do
16 edgeLabel← getRelationshipLabel(ri)
17 nodeStartLabel ← getEntityLabel(sk)
18 nodeEndLabel← getEntityLabel(sj)
19 nodeStartProperties←

{(“id”, getEntityId(sk)), (“startvalidtime”, getStartV alue(sk)),
20 (“endvalidtime”, getEndV alue(sk))} ∪ getAllAttributeV aluePair(sk)

/* getAllAttributeValuePair() returns the set of all attribute-value pairs of
a state */

21 nodeEndProperties←
{(“id”, getEntityId(sj)), (“startvalidtime”, getStartV alue(sj)),

22 (“endvalidtime”, getEndV alue(sj))} ∪ getAllAttributeV aluePair(sj)
23 nodeStart← matchNode(PG, nodeStartLabel, nodeStartProperties)
24 nodeEnd← matchNode(PG, nodeEndLabel, nodeEndProperties)
25 foreach state sb ∈ Sri do
26 edgeProperties← ∅
27 pT start ← createProperty(“startvalidtime”, getStartV alue(T sb))
28 pT end ← createProperty(“endvalidtime”, getEndV alue(T sb))
29 edgeProperties← edgeProperties ∪ {pT start, pT end}
30 foreach attribute pair a ∈ Asb do
31 patt ← createProperty(“a”, getAttributeV alue(a))
32 edgeProperties← edgeProperties ∪ {patt}

/* create an edge with a set properties */
33 D ← D ∪ createEdge(nodeStart, nodeEnd, edgeLabel, edgeProperties)

29

6. IMPLEMENTATION OF A TEMPORAL GRAPH DATASET: A CASE STUDY 30

Figure 2.9: Translation of our conceptual temporal graph in Figure 2.7 into the logical
property graph

6 Implementation of a Temporal Graph Dataset: a
Case Study

After discussing the conceptual representation of temporal graph data (Section 4) and
the way to implement it (Section 5), we now present a case study of its implementation
in a graph-oriented NoSQL data store based on the dataset of Figure 2.7 to demonstrate
its technical feasibility and usability.

30

6. IMPLEMENTATION OF A TEMPORAL GRAPH DATASET: A CASE STUDY 31

Figure 2.10: Implementation of the dataset in Figure 2.7 in Neo4j

To evaluate the technical feasibility of our conceptual model, we apply the mapping
process in Algorithm 1 to implement the dataset in Fig 2.7 in Neo4j 8, a graph data
store supporting the logical property graph model. Figure 2.10 presents the result of this
implementation.

To evaluate the usability of our conceptual model, we identify the possible analyses on
our temporal graph representation. First, the user can make a classic analysis according
to the graph component only (e.g. entities or relationships). Second, the user can make
an analysis according to time dimension (e.g. on continous or non continous periods
etc.). Third, the user can make an analysis according to the evolution type (attribute
set, attribute value or topology). The user can cross these different analysis lines to
obtain more valuable insights. In the following, we propose several cross-analyses of the

8https://neo4j.com/

31

https://neo4j.com/

6. IMPLEMENTATION OF A TEMPORAL GRAPH DATASET: A CASE STUDY 32

Figure 2.11: Result of business analysis B1.

e-commerce dataset made by decision makers.

Decision makers make a first business analysis (B1). The 4th of January at 10:00, the
e-commerce company announces a discount code on the website homepage for a summer
promotion. To evaluate the impact of this announcement, they want to know if cus-
tomers use the discount code in the hour following the announcement. This consists in
analysing the addition of the attribute discount code in the attribute set of the states of
ADDTOCART relationships during the hour. This is translated in Cypher, the language
query of Neo4j as follows:

MATCH (c:CUSTOMER)-[r:ADDTOCART]->(i:ITEM)
WHERE datetime(r.startvalidtime)< datetime("2021-01-04T12:00")
AND datetime(r.startvalidtime)>=datetime("2021-01-04T10:00")
RETURN c.id + "-"+ i.id as relationshipCUSTOMERITEM,
collect({time:datetime(r.startvalidtime),
attributeset:keys(r)}) as statesofADDTOCART

As a result of B1, we obtain in Fig 2.11 the attribute set of all states of ADDTOCART
relationships in the dataset for the period of interest. We observe that the customer
identified C1 has used the discount code to buy the item identified I1 at 10:37 after the
announcement of the summer promotion.

Decision makers make a second business analysis (B2). To evaluate the impact of
the previous announcement, they also want to know if the quantity of items added by

32

6. IMPLEMENTATION OF A TEMPORAL GRAPH DATASET: A CASE STUDY 33

Figure 2.12: Result of business analysis B2.

customers in their card has changed in the hour following the announcement. This consists
in analysing the changes through time of the value of the attribute quantity of the states
of ADDTOCART relationships during the hour. This is translated in Cypher as follows:

MATCH (c:CUSTOMER)-[r:ADDTOCART]->(i:ITEM)
WHERE datetime(r.startvalidtime)< datetime("2021-01-04T12:00")
AND datetime(r.startvalidtime)>=datetime("2021-01-04T10:00")
RETURN c.id + "-"+ i.id as relationshipCUSTOMERITEM,
collect({time:datetime(r.startvalidtime), quantity:r.quantity})
as statesofADDTOCART

As a result of B2, we obtain in Fig 2.12 the value of the attribute quantity for each
ADDTOCART relationship in the dataset for the period of interest. We observe that
the customer C1 has updated the quantity of item I1 in his cart at 10:37 after the
announcement of the summer promotion.

Decision makers make a third business analysis (B3). The e-commerce website records
the highest number of sales on item I1. They want to know if this increase in I1’s sales
is due to changes in its characteristics (new price, offer or picture etc.). This consists in
analysing the changes that occurred between the states of the temporal entity I1. This
is translated in Cypher as follows:

MATCH (i:ITEM)
WHERE i.id="I1"
WITH collect(i) as lists
UNWIND range(0,(size(lists)-2)) as j
RETURN "state at " + lists[j].startvalidtime+" AND "
+ "state at " +lists[j+1].startvalidtime as states,
apoc.diff.nodes(lists[j], lists[j+1]) as changesbetweenstates

33

6. IMPLEMENTATION OF A TEMPORAL GRAPH DATASET: A CASE STUDY 34

Figure 2.13: Result of business analysis B3.

As a result of B3, we obtain in Figure 2.13 the changes that occur between I1’s states
in terms of attribute set and value. For instance, we observe that the price of I1 has
changed from the 1st of January to the 3rd of January. Then, from the 3rd of January to
the 4th of January, the attribute special gift has been added to I1.

Decision makers make a fourth business analysis (B4). They want to know the time
period in which customers are active on the website each day. It contributes to customer
profiling to make more adapted policies in the future. This consists in analysing the
addition and removal of temporal entities and relationships to see when they are connected
and disconnected from the website. This is translated in Cypher as follows:

MATCH (c:CUSTOMER)-[r]->(i:ITEM)
RETURN date(r.startvalidtime) as day,
min(time(r.startvalidtime)) as mintime,
max(time(r.endvalidtime)) as maxtime

As a result of B4, we obtain, in Figure 2.14, for each day the minimum start valid time
and the maximum end valid time at which customers connect to the website.

34

7. EXPERIMENTAL ASSESSMENTS 35

Figure 2.14: Result of business analysis B4.

To sum up, our solution facilitates the exploration of temporal graph data through our
conceptual model. Indeed, we can identify directly in the implementation of our temporal
graph all data changes (Figure 2.10). Moreover, our solution provides a straightforward
data restitution without introducing modelling-related concepts in the analysis results
visualization (Figures 2.11, 2.12 and 2.13, 2.14). In this way, this solution makes the
technical complexity transparent to non-expert users.

7 Experimental Assessments

7.1 Protocol

7.1.1 Objectives

We run two series of experiments with the two following objectives:

• to evaluate the efficiency of our proposed temporal graph model by comparing its
storage and query performance to the snapshot-based graph model (Section 7.4);

• to evaluate the scalability of our proposed model by comparing its query performance
on different data volumes (Section 7.5).

7.1.2 Methods

To avoid any bias in datasets, we need to include both benchmark and real datasets
(Section 7.1.3). These datasets should provide different scale factors in order to measure
scalability. Moreover, we need benchmark queries with a complete coverage of different
analyses types (Section 7.1.4): temporal analysis (according to different time granularity),
graph scope (from a single entity to the entire graph) and evolution analysis (according
to topology, attribute set or attribute value).

For our two specific objectives (Section 7.1.1), we conduct two series of experiments
according to the following methods. The first series consists of a comparative study of
the storage (through the database size, database creation time) and query performance
(through query execution times) (Section 7.4). We implement our temporal graph model
and two snapshot-based models for the comparison. The second series consists of evalu-
ating the scalability of our model during querying real-world datasets (Section 7.5).

35

7. EXPERIMENTAL ASSESSMENTS 36

7.1.3 Datasets

TPC-DS datasets Temporal evolutions exist in a reference benchmark available on-
line, namely TPC-DS benchmark9. This benchmark is based on transaction data of a
retail company. It allows us to find all the three types of evolution: (i) attribute value,
(ii) attribute set and (iii) topology. We use the dataset from this benchmark to answer the
objective of evaluating the efficiency of our model compared to the snapshot-based mod-
els. To do so, we transform the generated dataset from the benchmark into three datasets
having our temporal graph, a classic snapshot and an optimized snapshot representations.
All transformation details of the TPC-DS dataset into the three representations are avail-
able on the website https://gitlab.com/2573869/dke_temporal_graph_experiments.
In Table 2.6, we present the results of the transformation steps: the number of ver-
tices/edges/snapshots and the evolution types of the three TPC-DS datasets.

E-commerce dataset The E-commerce dataset has been collected from a real-world
ecommerce website by RetailRocket company. It is available on Kaggle 10. It is about cus-
tomers’ activity on the website (views, add to cart and transactions). The dataset includes
changes over time: (i) on item characteristics with the addition of new attributes over
time and the update in attribute values and, (ii) on the interactions between customers
and items like clicks, add to carts and transactions. We use this dataset to answer the ob-
jective of evaluating the scalability of our model. To do so, we transform the E-commerce
dataset into our temporal graph representation. All transformation details are available
on the website https://gitlab.com/2573869/dke_temporal_graph_experiments. In
Table 2.6, we present the result of the transformation steps: the number of vertices/edges
and the evolution types of E-commerce dataset.

Social Experiment dataset The Social Experiment dataset has been collected from
a social experiment on students from MIT who lived in dormitory Madan et al. (2012).
It is available online at Reality Commons website11. This dataset includes changes over
time: (i) on the value of the symptoms of students and (ii) on the interactions between
students. We use this dataset to answer the objective of evaluating the scalability of
our model. To do so, we transform the Social Experiment dataset into our temporal
graph representation. All transformation details are available on the website https:
//gitlab.com/2573869/dke_temporal_graph_experiments. In Table 2.6, we present
the result of the transformation steps: the number of vertices/edges and the evolution
types of Social Experiment dataset.

Citibike dataset The Citibike dataset is provided by the company Citibike. The
Citibike company collects data about their bicycle rentals since the year 2013 in New
York City and makes them avalaible online12. This dataset includes bike stations and
trips between these stations. We identify that the attribute set describing trips between
stations has changed since May 2021. Moreover, the value of the attributes describ-
ing trips changes over time. We use this dataset to answer the objective of evaluat-
ing the scalability of our model. To do so, we transform the Citibike dataset into our

9http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf
10https://www.kaggle.com/retailrocket/ecommerce-dataset?select=item_properties_part2.

csv)
11http://realitycommons.media.mit.edu/socialevolution.html
12https://www.citibikenyc.com/system-data

36

https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
https://gitlab.com/2573869/dke_temporal_graph_experiments
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf
https://www.kaggle.com/retailrocket/ecommerce-dataset?select=item_properties_part2.csv
https://www.kaggle.com/retailrocket/ecommerce-dataset?select=item_properties_part2.csv
http://realitycommons.media.mit.edu/socialevolution.html
https://www.citibikenyc.com/system-data

7. EXPERIMENTAL ASSESSMENTS 37

Implementation TPC-DS:
Temporal
graph

TPC-DS:
Classic
snapshots

TPC-DS:
Optimized
snapshots

E-
commerce

Social
experiment

Citibike

Objective of efficiency
evaluation

YES YES YES NO NO NO

Objective of scalability
evaluation

NO NO NO YES YES YES

Vertices 112 897 7 405 461 5 347 477 4 821 694 33 934 2 861
Edges 1 693 623 4 207 657 4 044 481 5 222 996 2 168 270 27 561 618
Snapshots N/A 60 53 N/A N/A N/A
Evolution types of entities AS, AV, T AS, AV, T AS, AV, T AS, AV, T AV, T ∅
Evolution types of relation-
ships

AS, AV, T AS, AV, T AS, AV, T T T AV, AS, T

Table 2.6: Characteristics of datasets. AS = Attribute Set, AV = Attribute Value, T =
Topology

temporal graph representation. All transformation details are available on the website
https://gitlab.com/2573869/dke_temporal_graph_experiments. In Table 2.6, we
present the result of the transformation steps: the number of vertices/edges and the
evolution types of Citibike dataset.

7.1.4 Benchmark queries

To conduct our two series of experiments, we use the same benchmark queries to evaluate
the query performance. To do so, we identify the possible query types according to all
analyses axes and sub-axes that a user (e.g., a decision-maker) could have when querying
temporal graph data (Khurana and Deshpande, 2016; Koloniari et al., 2013). The first
analysis axis is the graph component to evaluate the cost of querying data at the level of a
single entity (SE) or a set of connected entities (SU) or the entire graph (G). The second
analysis axis is the evolution type to evaluate the cost of querying changes in data in
terms of: attribute set (AS), attribute value (AS) or topology (T). The third analysis axis
is the time scope to evaluate the cost of querying data at the level of a single time point
(SP), a single interval (SI), multiple time points (MP) or multiple time intervals (MI).
The fourth analysis axis is the operation type used: (i) comparison aiming at evaluating
how does a graph component change over time with respect to a temporal evolution type
(C) and (ii) aggregation aiming at evaluating an aggregate function (A).

We create benchmark queries in Table 2.7 by crossing the different sub-axes of analysis
to distribute possible query scenarios in a balanced way. Each benchmark query represents
a possible combination of analysis sub-axes. As a result, we obtain 28 queries. Finally,
we translate these benchmark queries in the native query language of Neo4j: Cypher.

7.2 Technical environment
We use the same hardware configuration for the two experiments. It is as follows: Pow-
erEdge R630, 16 CPUs x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40Ghz, 63.91 GB. One
virtual machine is installed on this hardware. This virtual machine has 6GB in terms of
RAM and 100GB in terms of disk size. We install Neo4j (community version 4.1.3) as data
store for our datasets on this virtual machine. To avoid any bias in the disk management
and query performance, we do not use any customized optimization techniques but rely
on default tuning of Neo4j. The technical details of our experiments are available on the

37

https://gitlab.com/2573869/dke_temporal_graph_experiments

7. EXPERIMENTAL ASSESSMENTS 38

G
ra

ph
co

m
po

ne
nt

E
vo

lu
ti

on
ty

pe

T
im

e
sc

op
e

O
pe

ra
ti

on
ty

pe

Q1 The descriptive attributes of an entity at X SE AS SP

Q2 The descriptive attributes of an entity at X and Y SE AS MP

Q3 The changes that occurred on the descriptive attributes of an entity between X and
Y

SE AS MP C

Q4 The descriptive attributes of an entity from X to Y SE AS SI

Q5 The descriptive attributes of an entity at a regular period SE AS MI

Q6 The changes that occurred on descriptive attributes of an entity from X to Y SE AS SI C

Q7 The value of an entity attribute at X SE AV SP

Q8 The value of an entity attribute at X and Y SE AV MP

Q9 The change in the value of an entity attribute between X and Y SE AV MP C

Q10 The value of an entity attribute from X to Y SE AV SI

Q11 Aggregation on the value of an entity attribute at a regular period SE AV MI A

Q12 A subgraph at X SU T SP

Q13 A subgraph at X and Y SU T MP

Q14 Aggregation on a subgraph at X SU T SP A

Q15 Aggregation on a subgraph at X and Y SU T MP A

Q16 A subgraph from X to Y SU T SI

Q17 A subgraph at a regular period SU T MI

Q18 Aggregation on a subgraph at a regular period SU T MI A

Q19 The descriptive attributes of a relationship at X SU AS SP

Q20 The descriptive attributes of a relationship at X and Y SU AS MP

Q21 The changes that occurred on the descriptive characteristics of a relationship be-
tween X and Y

SU AS MP C

Q22 The descriptive attributes of a relationship from X to Y SU AS SI

Q23 The changes that occurred on the descriptive characteristics of a relationship from
X to Y

SU AS SI C

Q24 The value of a relationship attribute at X SU AV SP

Q25 The value of a relationship attribute at X and Y SU AV MP

Q26 The value of a relationship attribute from X to Y SU AV SI

Q27 Aggregation on the value of a relationship attribute at a regular period SU AV MI A

Q28 The state of the entire graph at X G SP

Table 2.7: Benchmark queries. X and Y describe time points defined on a time unit. SE
= Single Entity, SU = Subgraph, G = Entire Graph, AS = Attribute Set, AV = Attribute
Value, T = Topology, SP = Single Point, MP = Multiple Points, SI = Single Interval,
MI = Multiple Intervals, C = Comparison, A = Aggregation

38

7. EXPERIMENTAL ASSESSMENTS 39

website https://gitlab.com/2573869/dke_temporal_graph_experiments.

7.3 Summary
Regarding the first series of experiments, we create, for each of the three benchmark
datasets (TPC-DS), 28 queries according to the query types we set in Section 7.1.4.
We run each query ten times and take the mean time of all runs as final execution
time. This makes a total of 84 queries (28 queries × 3 datasets) and 840 executions
(28 queries × 3 datasets × 10 times).

Regarding the second series of experiments, we have three scale factors from 0.3GB to
6.7GB. We create a total of 44 queries adapted to the business contexts of the three real
datasets (E-commerce, Social Experiment and Citibike). We run each query ten times
and take the mean time of all runs as final execution time. This makes a total of 440
executions (44 queries× 10 times).

7.4 Results of the efficiency evaluation of our model
For this first series of experiments, we use the three TPC-DS datasets having the follow-
ing representation : our temporal graph, classic graph snapshots and optimized graph
snapshots (Section 7.1.3). The classic snapshot model consists in sampling graph data
at a regular time period (here we chose a month). Our optimized snapshot model con-
sists in creating a snapshot only if it includes a change compared to a previous snapshot.
We compare the storage and query performance of our temporal graph implementation
to classic and optimized snapshot-based implementations through the size, creation time
and query execution times in Neo4j. The query execution time is the elapsed time in sec-
onds for processing the query. We run the 28 benchmark queries for each implementation
(Section 7.3).

7.4.1 Observations of storage performance

In Table 2.8, we observe that our model reduces respectively by 12 times and 9 times the
size of database instance storing classic snapshots and optimized snapshots. Moreover,
the datasets based on snapshot approaches require more time to be imported since they
contain more nodes and edges than our model.

7.4.2 Observations of query performance

In Figure 2.15, we observe the execution times for processing each benchmark query in
Table 2.7. Queries Q1-Q6 are instantaneous (close to 0) for the three implementations.
Q17-Q21 and Q27 record execution spikes for the classic and optimized snapshots imple-
mentations. The execution time of Q28 explodes for the classic snapshots and temporal
graph implementations. Q28 runs out of memory for the optimized snapshots implemen-
tation. The rest of benchmark queries (Q7-Q16 and Q22-Q26) does not exceed 6 seconds
for the three approaches. Overall, the execution query times of the temporal graph are
lower than both snapshot-based approaches.

In Figure 2.16, we observe the average gain in execution times of the temporal graph
implementation over both snapshots implementations by query types. First, we analyse
the query performance of our temporal graph according to the graph component, that

39

https://gitlab.com/2573869/dke_temporal_graph_experiments

7. EXPERIMENTAL ASSESSMENTS 40

Implementation TPC-DS :
Temporal graph

TPC-DS: classic
snapshots

TPC-DS:
Optimized
snapshots

Size (in GB) 0,3 3,7 2,8

Creation time (in sec) 15,795 56,529 45,827

Table 2.8: Size and creation time of graph database instances in Neo4j based on bench-
mark datasets

Figure 2.15: Execution times of 28 benchmark queries. *ROM = Run Out of Memory.

is requesting information at the level of a single entity (SE), a subgraph (SU) or the
entire graph (G). We observe that the temporal graph implementation outperforms both
snapshots approaches by saving 92%-93% of their average execution times on querying a
single entity or subgraph. The gain of the temporal graph over the classic snapshots on
querying the entire graph is smaller, accounting for 35%.

Second, we analyse the query performance of our temporal graph according to the evo-
lution type, that is requesting information at the level of attribute set (AS), attribute value
(AV) or topology (T). We observe that the gain of the temporal graph implementation is
the highest (99%) on querying attribute set over both snapshot-based implementations.
Regarding queries on attribute value, the temporal graph allows us to save 94% of average
execution times over both snapshot-based implementations. The execution times gain of
the temporal graph over both snapshots implementation is smaller on querying topology:
77% over classic snapshots and 81% over optimized snapshots.

40

7. EXPERIMENTAL ASSESSMENTS 41

Figure 2.16: Average execution times gain (in %) of our temporal graph over classic and
optimized snapshots by query types. *We do not take into account the execution time
of Q28 in the computation of average execution time of SP queries because it explodes
or runs out of memory for each implementation. SE = Single Entity, SU = Subgraph,
G = Entire Graph, AS = Attribute Set, AV = Attribute Value, T = Topology, SP =
Single Point, MP = Multiple Points, SI = Single Interval, MI = Multiple Intervals, C =
Comparison, A = Aggregation.

Third, we analyse the query performance of our temporal graph according to the time
scope, that is requesting information at the level of a single time point (SP), multiple
time points (MP), a single interval (SI), or multiple time intervals (MI). We observe that
there is no big difference of execution times gain of the temporal graph implementation
between querying a single time point, multiple time points or single interval. The temporal
graph saves from 94% to 97% of the average query execution times of snapshot-based
implementations. However, the temporal graph saves less execution times on querying
multiple intervals (89%).

Last but not least, we focus on the query performance of our temporal graph according
to the operation type, that is comparison (C) or aggregation (A). We observe that the
temporal graph saves more execution times of snapshots’ implementations for processing
comparison (98%) than aggregation operations (91%).

7.4.3 Discussion

The gap in the query performance between the temporal graph and the two snapshots
based implementations is partly due to difference of the data volume involved in queries.
The two snapshots approaches use a different time management method than our model.
This leads to larger use of disk space (Table 2.8) and more time to process during query-
ing (Figure 2.15). Across all query types, the temporal graph implementation always
outperforms both snapshot-based implementations (Figure 2.16). Though the optimized
snapshot implementation consumes less disk space than classic snapshot implementation,
it saves almost the same average query execution times. Indeed, as time is managed
differently in the two snapshot-based models, it is also queried differently. Conditions on
time for classic snapshots are translated in Cypher by simple time predicates. Conversely,

41

7. EXPERIMENTAL ASSESSMENTS 42

conditions on time in queries for the optimized snapshots are translated in Cypher by a
sub-query to search for the snapshot that is the closest to a requested time. Therefore,
the query performance of the optimized snapshot implementation reaches execution times
almost equal or higher (e.g. Q13, Q14 or Q21) than the classic snapshot implementation.

7.4.4 Implications

The choice of a data model to manage temporal graph data impacts significantly the
storage and querying efficiency. Our model has a double advantage. First, it allows to get
rid of data redundancy. So it saves a significant amount of space on the disk compared to
snapshots. Second, it supports efficiently a wide range of queries while keeping average
execution times low. The implementation with our model allows to save up to 99% of
execution times compared to both snapshot-based implementations.

7.5 Results of the scalability evaluation of our model
For this second series of experiments, we use three real datasets (Social Experiment, E-
commerce and Citibike) representing three different scales of data volume and having our
temporal graph representation (Section 7.1.3). We compare the query performance of
the three implementation according to their scale factors: the size of database instance,
the number of nodes and edges. More precisely, we analyse (i) the execution times of
queries involving only entities (SE) at three different scales of the number of nodes and
(ii) the execution times of queries involving relationships (SU) at three different scales of
the number of edges. These two analyses allow us to get an idea of the impact of the
growing size and interconnectivity of a dataset. We are not able to run the 28 benchmark
queries for each implementation because each dataset does not embed all evolution types.

7.5.1 Observations

Regarding the size of each implementation, we observe in Table 2.9 that Social Experiment
implementation has the smallest database instance size while Citibike has the highest one.
Regarding the number of nodes and edges, we observe that E-commerce implementation
is composed of the highest number of nodes (Table 2.10) while Citibike implementation is
composed of the highest number of edges (Table 2.11). Regarding the average execution
time of queries involving entities (SE) (Figure 2.17), the Social Experiment implementa-
tion records instantaneous execution times. On the contrary, the average execution time
of queries on entities for the E-commerce implementation explodes (>30s). No queries on
entities were run on the Citibike implementation. Finally, regarding the average execution
time of queries involving relationships (SU) (Figure 2.18), we observe that it is globally
low (at most 2s) that for the three implementations. Citibike implementation records the
higher average execution time of queries involving relationships.

7.5.2 Discussion

Regarding queries on entities (SE) (Figure 2.17), the gap of execution times between the
E-commerce and Social Experiment implementations is partly due to the difference in the
number of nodes involved in queries. As queries on entities involve conditions on nodes,
they involve a higher number of nodes during processing for the E-commerce implementa-
tion than the Social Experiment implementation. So they require more execution times to

42

8. CONCLUSION 43

Implementation Social Experiment E-commerce Citibike
Size (in GB) 0,3 3,6 6,7

Table 2.9: Size of graph database instances in Neo4j based on real datasets.

Implementation Social Experiment E-commerce Citibike
Scale factor 2 3 1
Number of nodes 33 934 4 821 694 2 861

Table 2.10: Number of nodes and scale factors of graph database instances in Neo4j based
on real datasets.

process for the E-commerce implementation. The Social Experiment implementation re-
duces by 99% the average execution time of SE queries. Proportionally, Social Experiment
implementation has 99% less nodes than the E-commerce implementation.

Regarding queries on relationships (Figure 2.18), the gap of execution times between
the three implementations is partly due to the difference in the number of edges involved
in queries. As queries on relationships involve conditions on edges, they involve a higher
number of edges during processing for the Citibike implementation than the Social Ex-
periment and E-commerce implementations. So they require more execution times to
process for the Citibike implementation. The Social Experiment implementation has 92%
less edges than the Citibike implementation. It saves 80% of the average execution time
of SU queries of the Citibike implementation. The E-commerce implementation has 81%
less edges than the Citibike implementation. It saves 26% of the average execution time
(of SU queries) of the Citibike implementation.

7.5.3 Implications

Query execution times do not depend directly on the size of the implementation but
specifically on the number of nodes and edges implemented in Neo4j. Indeed, query
execution times explode with the increase in the number of nodes while stay quite low
with the increase in the number of edges (i.e. the interconnectivity) in a dataset. As
Neo4j is a graph-based data store, queries involving conditions on edges are more scalable
compared to queries involving conditions on nodes (Vicknair et al., 2010).

8 Conclusion
To be able to explore graph data evolving over time, it is necessary to use data models
providing a structure to organize them and establishing their semantics. To do so, several
models are proposed in the literature. However, they come with several limitations. First,
they do not associate temporal evolution at all levels of the graph. Second, they use a
tracking method of graph data changes that prevents direct access to information about
changes at the different graph levels. Finally, they tend to be more technically oriented
by mixing implementation details in formal definitions. Regarding their implementation,
they are dependent on specific technical environments. In a nutshell, current models for
graph data with temporal evolution are not easily reusable to meet the needs of various
users and applications.

Therefore, in this chapter, we have proposed a complete management solution for graph

43

8. CONCLUSION 44

Implementation Social Experiment E-commerce Citibike
Scale factor 1 2 3
Number of edges 2 168 270 5 222 996 27 561 618

Table 2.11: Number of edges and scale factors of graph database instances in Neo4j based
on real datasets

Figure 2.17: Average execution times of SE queries according to three scale factors. SE=
Single Entity

Figure 2.18: Average execution times of SU queries according to three scale factors. SU=
Subgraph

data with temporal evolution: from a conceptual model, called Temporal Graph, to its
implementation. Our conceptual model enables to represent graph data that change over

44

8. CONCLUSION 45

time. The advantage of our model compared to existing approaches is first to be business-
oriented. It provides a level of abstraction that focuses on entities and relationships and
their states to reflect their evolution, without including implementation details. Second, it
is generic in terms of representing all types of changes of graph data (topology, attribute
set and attribute value). Finally, it provides direct access to information about graph
data changes by associating a time-interval to the several levels of the graph: entities,
relationships and their states.

To use our conceptual model in real business analyses, it must be transformed into a
logical model before being implemented in a specific technical environment. To do so, we
have proposed direct translation rules between our model and the property graph, which
is commonly supported by graph-oriented NoSQL data stores. The advantage of our
translation rules is that our model is directly convertible into the property graph without
any specific developments. We have verified the feasibility of our model by implementing
an example dataset in the Neo4j graph data store using our translation rules. Then, we
verified its usability by running business analyses on evolution aspects.

We have made two experiments to evaluate the efficiency and scalability of our model.
To highlight the efficiency of our model, we made a comparative study of its implemen-
tation in Neo4j with the traditional sequence of snapshots and an optimized version of
snapshots based on the same dataset. We have observed that our model performs better
than the sequence of snapshots by reducing 12 times disk usage and by saving up to
99% of query execution times. In comparison to the optimized sequence of snapshots,
our model reduces 9 times disk usage and saves up to 99% of query execution times. In
a nutshell, our model is an efficient solution for storing and querying a graph dataset
with temporal evolution. To evaluate the scalability of our model, we made a compara-
tive study of three temporal graph implementations in Neo4j based on three real-world
datasets with different volumes. Globally, execution times of queries increase linearly with
data volumes.

45

Chapter 3

Querying Temporal Graphs

Contents
1 Introduction . 47
2 Related Work . 47

2.1 Temporal Graph Algebras . 48
2.2 Extensions of textual query languages 48
2.3 Programming Tools . 50
2.4 Comparative Analysis of Related Work 53

3 Proposition . 58
3.1 Conceptual Level . 58
3.2 Logical Level . 68
3.3 Physical Level . 75

4 Experimental Assessments . 77
4.1 Technical Environment . 77
4.2 Datasets . 78
4.3 Benchmark Analyses . 78
4.4 Experimental Results . 79

5 Conclusion . 86

46

1. INTRODUCTION 47

1 Introduction
In the previous chapter, we have proposed the ‘Temporal Graph’ which is a conceptual
model providing a business-oriented representation of graph data with temporal evolution.
It can be physically stored in different data stores using mapping rules we propose. The
exploration of temporal graph data starts with the capability to find specific information
from these data according to a user’s need. This capability enables users to answer
fundamental business questions such as ‘What?’, ‘Who?’, ‘Where?’, ‘When?’. We provide
this capability through the proposition of a querying solution for graph data with temporal
evolution.

Querying refers to the process of finding specific information from a data source (e.g.,
a graph data store) in response to users’ business needs. In the literature, different ap-
proaches may be used to query the multiple dimensions of temporal graph data: query
algebras (like relational algebra) (Moffitt and Stoyanovich, 2017a), textual query lan-
guages (like SQL) (Zhang et al., 2019; Debrouvier et al., 2021), or programming tools
(like libraries or APIs) (Khurana and Deshpande, 2016; Massri et al., 2022). However,
they lack of a generic framework which is independent of implementation environments.
The absence of such a framework in current querying solutions makes it difficult for users
to adapt them to different contexts.

In this chapter, the objective is therefore to propose a complete querying solution for
temporal graph data. To do so, we propose a querying solution composed by three lev-
els of abstraction: a conceptual, logical and physical level. At the conceptual level, we
propose a query algebra based on the concepts of our Temporal Graph model presented
in the previous chapter. It provides conceptual (i.e., business oriented) operators allow-
ing users expressing business analyses in different contexts. The logical level translates
the conceptual level into implementation-independent operators to maintain a downward
compatibility with several technical environments. The physical level maps the logical
level into an actual implementation within a technical environment.

The remainder of this chapter is organized as follows. In Section 2, we review existing
solutions for querying temporal graph data to identify their limitations. In Section 3,
we present our querying solution for temporal graph data. In Section 4, we present the
experiments we carry out to evaluate the feasibility of our solution.

2 Related Work
In this section, we analyse the most recent work related to querying in temporal graph
data. We classify it into three categories:

• Query algebras, at the logical level, consist of theoretical frameworks (or sets of
operators) specifically designed to manipulate temporal graph data;

• Extensions of textual query languages, at the physical level, integrate new function-
alities to current graph query languages to query the temporal aspects of graph
data;

• Programming tools, at the physical level, offer pre-built functions to interact with

47

2. RELATED WORK 48

systems dedicated to temporal graph data.

2.1 Temporal Graph Algebras
Moffitt and Stoyanovich (2017a) propose to reuse relational algebra principles (Dignös
et al., 2012). They propose a temporal property graph G = (TV, TE) where TV is a
set of temporal relations in which each temporal relation associates a vertex v and its
attribute a during a valid time interval T and TE is a set of edges in which each edge
e connects a pair of vertices v1, v2 associated with an attribute a during a valid time
interval T . Moreover, the authors propose a temporal graph algebra (TGA) to enable
users to express temporal analyses over the temporal property graph. TGA includes the
trim operator to get vertices and edges of G which have a non-empty intersection with a
user-defined time interval c, with their periods trimmed to be within c. It is denoted as
follows :

trimT
c (G) = (TV ′ = πv,T interesect c,a(σT

T overlaps c(TV)),
(TE ′ = πe,v1,v2,T interesect c,a(σT

T overlaps c(TE))

The temporal subgraph matching operator enables to get subgraphs matching a user-
defined pattern, denoted as P , including a set of vertices variables and edge variables that
may have temporal predicates. The operator is denoted as follows :

subgraphT (P, G) = (qv(P, G), qe(P, G))

where qv is the set of vertices that matches vertex variables and constants in P and qe is
the set of edge that matches edge variables and constants in P .

TGA’s operators are composable. They take a graph as input and return a new graph.
The authors develop a prototype implementation of the temporal property graph and
TGA on Apache Spark.

2.2 Extensions of textual query languages
The functionalities of a textual query language are designed to align with the concepts
and structures of a data model, used to represent and store data. In the context of graphs,
graph query languages are commonly based on the RDF data model, such as SPARQL
(W3C) 1 and RDFQL (W3C) 2, or on the property graph model, such as Cypher (Neo4j)
3, G-Core (LDBC) (Angles et al., 2018), GQL 4 and PQGL (Oracle) (Van Rest et al.,
2016) (and so on). These graph query languages embed functionalities for analyses on
topology and attributes. Some existing work extends the previous graph query languages
for querying temporal graph data.

2.2.1 SPARQL[t]

The article of Zhang et al. (2019) presents a query language called SPARQL[t], associated
with the RDFt model an extension of the RDF model. In the classic RDF model, a triple

1https://www.w3.org/TR/rdf-sparql-query/
2https://www.w3.org/Submission/RDQL/
3https://neo4j.com/developer/cypher/querying/
4https://www.gqlstandards.org/what-is-a-gql-standard

48

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/Submission/RDQL/
https://neo4j.com/developer/cypher/querying/
https://www.gqlstandards.org/what-is-a-gql-standard

2. RELATED WORK 49

is defined as (s, p, o) where s is a subject, p is a predicate, o is an object. In the RDFt
model, a triple is (s, p[t] − n, o) where t is a time point or a time interval (t = [ts, te])
assigned to the predicate and n is the update count information. SPARQL[t] extends
then SPARQL query language by adding several new constructors (Fig 3.1) to include
RDFt expressions in the SPARQL syntax. Moreover, they propose transformation rules
and algorithms to translate queries from SPARQL[t] to SPARQL and Cypher to achieve
compatibility with existing query engines. Finally, they propose the prototype system in
Fig 3.2 to support RDFt temporal data representation and querying.

Figure 3.1: New syntax constructors in SPARQL[t] (Zhang et al., 2019)

Figure 3.2: The architecture of the system proposed by (Zhang et al., 2019)

2.2.2 T-GQL

Debrouvier et al. (2021) propose the T-GQL query language associated with a temporal
property graph data model, i.e., an extension of property graphs. However, contrary

49

2. RELATED WORK 50

to the classic property graphs, this model cannot embed properties in edges, and then
does not consider the temporal evolution of edges. T-GQL syntax is based on the GQL
query language. To allow users to perform temporal analyses on the temporal property
graph, T-GQL introduces certain temporal operators, such as the SNAPSHOT operator
to return the state of the graph at a certain point in time (Fig 3.3) or the BETWEEN
operator to return the state of the graph during a given interval in time (Fig 3.4). The
authors implement their proposed data model and query language over a Neo4j database
(Fig 3.5). The T-GQL queries are translated automatically into Cypher, Neo4j’s query
language using the ANTLR 5 parser generator.

Figure 3.3: An example of T-GQL query with the SNAPSHOT operator (Debrouvier
et al., 2021)

Figure 3.4: An example of T-GQL query with the BETWEEN operator (Debrouvier et al.,
2021)

2.3 Programming Tools
Some research works propose systems dedicated to manage temporal graph data including
programming tools to query temporal graph data.

2.3.1 Historical Graph Store

Khurana and Deshpande (2016) present a graph data management system, called His-
torical Graph Store (HGS) (Fig 3.6). It uses a temporal graph data model which is
vertex-centric. The temporal graph is seen as a collection of evolving vertices over time,
and edges are considered as attributes of the vertices. HGS provides the Temporal Graph
Analytics Framework (TAF) which is a Java and Python based library of temporal graph
operators to enable programmers to execute diverse analytical tasks. This includes the
timeslice operator to find the state(s) of vertices or subgraphs according to a selected time
point (or interval) and the select operator to find vertices or subgraphs according to a
condition on attribute values.

5https://www.antlr.org/

50

2. RELATED WORK 51

Figure 3.5: The architecture of the system proposed by (Debrouvier et al., 2021)

Figure 3.6: The architecture of the system proposed by (Khurana and Deshpande, 2016)

2.3.2 Gradoop

Rost et al. (2021) develop the graph dataflow system, called Gradoop, for scalable, dis-
tributed analytics for large temporal property graphs (Fig 3.7). In order to express analyt-
ical problems on temporal property graphs, they provide a programming query language

51

2. RELATED WORK 52

Figure 3.7: The architecture of the system proposed by (Rost et al., 2021)

Figure 3.8: An example of query in GrALa using the snapshot operator (Rost et al., 2021)

called GrALa composed by operators. Operators take as input and output graphs or graph
collections to enable the combination of operators for advanced analysis. For instance, the
snapshot operator extracts subgraphs (vertices and edges) that existed at a user-defined
time range. It relies on temporal operators functionally similar to Allen operators (Allen,
1983) such as asOf (equivalent to equal) and overlaps (Fig 3.8). The temporal property
graph model and GrALa are implemented on top of a distributed system (Apache Flink).

2.3.3 Clock-G

(Massri et al., 2022) develop a temporal graph management system called Clock-G. It
is based on a data model of temporal property graph. Clock-G provides a Client API
(Fig 3.2) to allow users making queries on the stored temporal graph. This API includes
functionalities allowing users to make several types of temporal graph queries: point-
based local queries (find a path starting from a vertex given some predicates apart from
a chosen time point), range-based local queries (similar to point-based local queries but
consider a time interval) and global queries (find the state of a subgraph at a given time
instant or interval).

52

2. RELATED WORK 53

Figure 3.9: The architecture of the system proposed by (Massri et al., 2022)

2.4 Comparative Analysis of Related Work
We propose 7 comparison criteria divided into 2 categories to evaluate related work to
querying temporal graph data. On the one hand, the analysis criteria category focuses
on evaluating the querying solution’s ability to formulate queries on various dimensions
(Figure 3.10) and granularities of the real-world application being represented in temporal
graph data. The objective is to assess if the solution is adaptable to a variety of use cases.
Each criterion of this category represents therefore one dimension of temporal graph data
and the different granularities of the dimension that can be explored. Each criterion in
this category is assessed according to whether it is not satisfied at all, partially satisfied,
or fully satisfied.

• Topology: A querying solution should support analyses on the different granulari-
ties of the topology dimension of the real-world:

– a single entity;

– a group of connected entities;

– the whole set of connected entities.

• Attribute: A querying solution should support analyses on the attribute dimension
of the real-world:

– attributes of entities and their value;

– attributes of relationships between entities and their value;

• Time: A querying solution should support analyses on the time dimension of the
real-world :

53

2. RELATED WORK 54

– find information at different granularities of time (a time point or interval);

– find information by expressing different possible relationships between time
intervals. To do so, we will refer to Allen operators (precede, meet, overlap,
start, finish, equal) (Allen, 1983);

– find time-dependent information at the level of other dimensions: attribute
and topology.

Topology

Time

Attribute

Figure 3.10: Analysis dimensions of temporal graph data

On the other hand, the practicality criteria category evaluates how well the querying
solution is user-oriented, composable, flexible and compatible with existing technical so-
lutions. Each criterion in this category is assessed according to the three scales: low,
medium or high.

• User-oriented: A querying solution should have a clear syntax and semantics,
making it straightforward for a broad range of users to express their analysis needs.

• Composability: A querying solution should enable to make complex analyses.
To do so, it should be composable. Composability is the ability to combine and
chain simple components to perform complex analyses (Angles et al., 2018). This
facilitates the expression and understanding of complex analyses.

• Flexibility: Analysis needs may change over time. A querying solution must then
be adapted to allow the addition of new functionalities to grow alongside evolving
users’ needs.

• Compatibility: A querying solution must be implementable in a technical envi-
ronment without requiring custom developments. To do so, transformation methods
of the querying solution are essential to be compatible with existing available query

54

2. RELATED WORK 55

engines to facilitate its usage.

2.4.1 Analysis criteria

We observe that data models chosen to represent temporal graph data impact the types of
analyses that can be performed on them. Querying solutions of Moffitt and Stoyanovich
(2017a); Rost et al. (2021); Massri et al. (2022) extend the property graph model to
integrate temporal evolution of graph data. They provide functionalities to allow the
different granularities of the topology and attribute dimensions to be fully manipulated.
Querying solutions proposed by Zhang et al. (2019), Khurana and Deshpande (2016) and
Debrouvier et al. (2021) are based on different data models that do not allow including
multiple properties in edges. At most, they assign edges with timestamps. Therefore, they
partially answer the attribute analysis criteria. However, all current querying solutions
integrate partially Allen operators (at least the equality relationship) to express diverse
temporal relationships over time dimension (Moffitt and Stoyanovich, 2017a; Zhang et al.,
2019; Debrouvier et al., 2021; Khurana and Deshpande, 2016; Rost et al., 2021; Massri
et al., 2022).

2.4.2 Practicality criteria

User-Orientation We observe that temporal graph algebras and extensions of textual
query languages are solutions based on standards or well-established and widely accepted
frameworks. Zhang et al. (2019) propose a textual query language based on the seman-
tics of a standard data model concept (RDF) and on the syntax of a standard query
language (SPARQL) in the Semantic Web domain. Similarly, Debrouvier et al. (2021)
propose a textual query language based on GQL syntax, which is developed as a stan-
dard in the graph database community 6. Moffitt and Stoyanovich (2017a) propose a
temporal graph algebra based on the mechanisms of the relational algebra framework in
relational database community. So the use of the previous solutions requires some famil-
iarity with these standards and frameworks. Their user-orientation is therefore medium.
Conversely, programming tools are customized temporal graph data management systems
for answering specific technical issues (Khurana and Deshpande, 2016; Rost et al., 2021;
Massri et al., 2022). As a result, they require a considerable effort to learn and understand
the technical environment. So the user-orientation of these solutions is low.

Composability The temporal graph algebra in Moffitt and Stoyanovich (2017a) and
the query language in the temporal graph data management system in Rost et al. (2021)
are highly composable. The output of operators is the input of other operators, allowing
for composition. It is not the case for the rest of previous works. Extensions of textual
query languages have medium composability mainly because they have restrictions on
how operators can be combined in the expression of a query (Zhang et al., 2019; Debrouvier
et al., 2021). The temporal graph operators in the system of Khurana and Deshpande
(2016) do not have compatible inputs and outputs. Finally, in Massri et al. (2022)’s
temporal graph data management system, querying functionalities are not presented as
decomposable parts.

6https://www.gqlstandards.org/

55

2. RELATED WORK 56

Flexibility The temporal graph algebra in Moffitt and Stoyanovich (2017a) is highly
flexible. It can easily integrate new functionalities because it is completely independent
of implementation details. The flexibility of extensions of textual query languages is
medium (Zhang et al., 2019; Debrouvier et al., 2021). The evolution of their function-
alities should guarantee the consistency with the query languages they are based on.
Indeed, the query languages they are based on may also evolve over time. Finally, query-
ing solutions in temporal graph data management systems are completely self-developed
(Khurana and Deshpande, 2016; Rost et al., 2021; Massri et al., 2022). The integration
of new functionalities depends on their technical feasibility. Therefore, they have low
flexibility.

Compatibility Zhang et al. (2019) and Debrouvier et al. (2021) have high compat-
ibility. They provide transformation mechanisms to implement directly their querying
solution into diverse environments. Conversely, the rest of querying solutions previously
mentioned (Moffitt and Stoyanovich, 2017a; Khurana and Deshpande, 2016; Rost et al.,
2021; Massri et al., 2022) depends on a specific implementation. In other terms, they
have low compatibility.

2.4.3 Summary

Table 3.1 provides a summary of related work of querying solutions for temporal graph
data. We observe that globally existing solutions enable to make analyses on the multiple
dimensions of temporal graph data. However, the level of practicality of these solutions
is very variable. We notice in particular that the user audience targeted seems different
according to the solution. Some solutions, such as programming tools in temporal graph
data management systems, are aimed at users that have a deep technical expertise. Other
solutions, such as temporal graph algebra and extensions of textual query languages, are
aimed at users with some familiarity with some frameworks or standards. No querying
solution is addressed to non-technical experts. The distinction in the intended user audi-
ence is primarily attributed to the fact that these solutions do not address the design of
querying temporal graph data at different abstraction levels: the conceptual, logical, and
physical levels. We define the latter as follows.

At the conceptual level, the focus is on how to express those business analyses without
considering implementation details. This level must allow the design of composable com-
ponents for two objectives: (i) to facilitate the expression of complex analyses through the
combination of simple components and (ii) to anticipate the addition of new components
according to the changes in users’ needs. In a nutshell, the conceptual level addresses
the user-orientation, composability and flexibility criteria of the querying solution. The
compatibility aspect is not addressed at this level.

The logical level and physical levels ensure the compatibility of a querying solution. The
logical acts as a bridge between the conceptual and physical levels. It involves translating
the conceptual level into a more concrete data-oriented framework. This framework cap-
tures the structure and constraints of queries based on a data model which is technology-
independent. This enables the querying solution to be implemented in different technical
environments (such as database management systems) without significant modifications
to the logical structure. The physical level focuses on the selection and configuration of
the technical environment (such as a database management system, storage systems or

56

2. RELATED WORK 57

A
nalysis

C
riteria

P
racticality

C
riteria

A
bstraction

L
evel

Input

D
ata

M
odel

T
opology

A
ttribute

T
im

e
U

ser-O
rientation

C
om

posability
F

lexbility
C

om
patibility

C
onceptual

L
ogical

P
hysical

T
em

poral
G

raph

A
lgebras

M
offi

tt
and

Stoyanovich
(2017a)

tem
poralproperty

graph

M
ED

IU
M

H
IG

H
H

IG
H

LO
W

Zhang
et

al.(2019)
R

D
Ft

M
ED

IU
M

M
ED

IU
M

M
ED

IU
M

H
IG

H
E

xtended
T

extual

Q
uery

L
anguages

D
ebrouvier

et
al.(2021)

tem
poralproperty

graph

M
ED

IU
M

M
ED

IU
M

M
ED

IU
M

H
IG

H

K
hurana

and
D

eshpande
(2016)

vertex-centric

tem
poralm

odel

LO
W

LO
W

LO
W

LO
W

R
ost

et
al.(2021)

tem
poralproperty

graph

LO
W

H
IG

H
LO

W
LO

W
P

rogram
m

ing

T
ools

M
assriet

al.(2022)
tem

poralproperty

graph

LO
W

?
LO

W
LO

W

Table 3.1: Comparative Analysis of Related Work

distributed computing platforms) that will support the execution of the analysis tasks
defined at the conceptual and logical levels.

57

3. PROPOSITION 58

We identify the temporal graph algebra presented previously (Moffitt and Stoyanovich,
2017a) at the logical level. It focuses on the formalization of analyses on temporal graph
data through data-oriented concepts and in an independent implementation manner.
Then, a specific implementation has been proposed for this algebra, but we do not have
details on it. The extensions of textual query languages are at the logical and physical
levels (Debrouvier et al., 2021; Zhang et al., 2019). They propose a logical framework to
transform their proposed query languages into existing textual query languages. More-
over, they propose specific technical environments to implement their solution. We assign
programming tools to the physical level (Khurana and Deshpande, 2016; Rost et al., 2021;
Massri et al., 2022) since they are dependent on a system architecture. By focusing only
on the logical and physical levels, the previous querying solutions do not ensure that the
business needs are captured.

In conclusion, as highlighted in Table 3.1, no querying solution is sufficiently complete
to satisfy all analysis and practicality criteria. Indeed, this is due to the fact that no
querying solution is divided into the three abstraction levels.

3 Proposition
We propose a querying solution at three levels of abstraction - conceptual, logical and
physical - to guarantee that the analysis and practicality criteria are satisfied. At the
conceptual level, we propose operators that manipulate the concepts of our model of
Temporal Graph. At the logical level, we propose translation rules to translate our con-
ceptual operators into a combination of operators for querying property graphs. At the
physical level, we propose an implementation methodology of the conceptual and logical
level into textual query languages for property graphs.

3.1 Conceptual Level

3.1.1 Temporal Graph

We have defined a conceptual model of Temporal Graph (TG) detailed in Chapter 2. Our
proposed operators manipulate the concepts of this model.

The Temporal Graph TG = ⟨E, R⟩ is composed of a set of entities E = {e1, ..., eg} and
a set of relationships R = {r1, ..., rh}. TG takes into account the semantics of entities
and relationships through a set of labels LE = {lE1 , ..., lEp} describing entity classes and
a set of labels LR = {lR1 , ..., lRq} describing relationship types. Each entity ei has then
an explicit semantic described by a label, lE′ and similarly for each relationship ri with a
label lR′ . In this section, we extend the model with new functions to express the querying
process.

Definition 12. The function δE′ returns, for a label lE′, the set of entities E ′ having the
label:

δE′ : lE′ → E ′ where E ′ ⊂ E

Definition 13. The function δR′ returns, for a label lR′, the set of relationships R′ having
the label:

58

3. PROPOSITION 59

δR′ : lR′ → R′ where R′ ⊂ R

TG captures the evolution of entities and relationships over time through the concepts
of states. Each state s of an entity or relationship is associated to a valid time interval
T s = [tb, tf [, which indicates the stability period of the state. More precisely, an entity
is described by an identifier id and a set of states {s1, ..., sm} representing its evolutions
over time.

Definition 14. The function Σe returns for an entity e all of its states:

Σe : e→ {s1, ..., sm}

An entity may have different types of relationship with other entities. A couple of
entity states (sk, sj) may therefore be linked by relationship r with a type lR′ .

Definition 15. The function ρ returns, for two entity states sk and sj and a relationship
label lR′ connecting these two, a temporal relationship r if it exists:

ρ : sk × sj × lR′ → r

Similarly, as entities, a relationship r is composed by a set of states {s1, ..., sn} to
represent its evolutions over time.

Definition 16. The function Σr returns for a relationship r all of its states:

Σr : r → {s1, ..., sn}

3.1.2 Running Example

We propose an example of a TG in Figure 3.11 to analyse the interactions between indi-
viduals of a university in the context of a disease spreading over a time period of 6 days.
In the university, we distinguish students from teachers. Each entity (i.e., a student or
a teacher) is represented in the TG by a grey vertex labelled with its semantics (student
or teacher). Moreover, we distinguish two types of interactions between students and
teachers: virtual contact (call relationship) and physical contact (socialize and attend
class relationships). For instance, the set of students is δE′(STUDENT) = {15, 76}. In
other terms, the TG is composed by students identified 15 and 76. Taking into account
the semantics during analyses can make a great difference. In this context, we can ignore
virtual contacts and put more emphasis on physical contacts of teachers and students,
who generally meet more people during classes. For instance, the set of physical contacts
‘socialize’ between entities is δR′(SOCIALIZE) = {(s1, s3), (s2, s3)}. In other terms, this
is composed by relationships identified by the couple of entity states (s1, s3) and (s2, s3).

The health status of students and teachers can change over time due to the disease
transmission. Each entity (grey vertex) is then composed of one or several states (white
vertices). For instance, the student 76 has two different health status with Σe(id = 76) =
{s1, s2}. In the state 1, he has no fever and no cough from day 1 to day 2, and in the
state 2, he has fever and cough from day 3 to day 6.

Moreover, new interactions between students and teachers may appear and disappear
over time. Each interaction represents a state of a labelled relationship between two
entity states. An interaction is illustrated by a white rectangle. For instance, if we look

59

3. PROPOSITION 60

fever = 0
cough = 0

valid time =
[day1, day2]

STUDENT
id = 76

fever = 1
cough = 1

valid time =
[day3, day6]

fever = 0
cough = 1

valid time =
[day2, day6]

STUDENT
id = 15

fever = 0
cough = 0

valid time =
[day1,
day3]

TEACHER
id = 35

fever = 0
cough = 1

valid time =
[day4, day6]

valid_time = day2

a state of an entity

a relationship

an entity

Legend

a state of a relationship

valid time =
[day3 hour10am
day3 hour12am]

ATTENDCLASS

valid time =
[day3 hour8.3pm
day3 hour8.4pm]

CALL

SOCIALIZE

valid time =
[day6 hour2pm
day6 hour3pm]

valid time =
[day6 hour10am
day6 hour12am]

ATTENDCLASS

ATTENDCLASS

valid time =
[day5 hour10am
day5 hour12am]

valid_time = day6

valid_time = day4

SOCIALIZE

valid_time = day5

3

11

1

2

13
14

15

18

12

16

4
5

19

20

valid time =
[day5 hour2pm
day5 hour3pm]

17

fever = 1
cough = 1

valid time =
[day1,
day5]

TEACHER
id = 90

fever = 0
cough = 1

valid time =
day6

6
7

valid time =
[day1 hour10am
day1 hour11am]

8

ATTENDCLASS

valid time =
[day1 hour2pm
day1 hour3pm]

9

valid time =
[day1 hour6pm
day1 hour7pm]

ATTENDCLASS
10

Figure 3.11: An example of temporal graph

at the contacts between the student 15 in the state 3 and the student 76 in the state 2,
they interact three days during the studied period (rectangles numbered 14, 15 and 18).

60

3. PROPOSITION 61

Indeed, we have Σr(s3, s2) = {s14, s15, s18}.

3.1.3 Operators for Querying Temporal Graph

The objective of our querying solution is to enable users to perform fundamental analyses
over the topology, attribute, and time dimensions of a real-world application that involves
interconnected entities. To achieve this goal, we define in this section two conceptual
operators: one dedicated to manipulate the attribute and time dimensions and another
to manipulate the topology dimension. Indeed, the attribute and time dimensions are
manipulated in the same manner, unlike the topology dimension. These operators are
based on our conceptual TG model presented in Section 3.1.1.

In the context of dynamic applications, users may want to find information dependent
on time and attributes of entities (or relationships). Generally, for classic graphs, there
exist functionalities in existing querying solutions to filter data according to conditions
on vertex (or edge) attributes. In other terms, they allow extracting data limited only
to those vertices (or edges) that satisfy the condition. Below, we propose the operator
matchpredicates capable of filtering the TG according to user-defined conditions on the
attributes and valid time intervals of entities (or relationships).

Definition 17. The matchpredicates operator is used to extract a subgraph TGoutput from
an input temporal graph TGinput that satisfies a combination π of user-defined predicates.
It is denoted as follows:

matchpredicates : TGinput × π → TGoutput

where π = {π1 β π2 β...β πn−1 β πn} where each πi ∈ π is a predicate and β is a connector.
A predicate πi = X.c expresses a condition (or criteria) denoted as c that is assigned to a
given subject X in TGinput. There are two types of predicates:

• an attribute predicate denoted as, X.a θ w. It expresses a condition on the at-
tribute a of a subject X, which is a comparison of the value of an attribute a and
a user-defined value w using the comparison operator θ. Different comparison op-
erators are presented in Table 3.2 to express different meanings of the relationship
between the two attribute values.

• a temporal predicate denoted as, X.T α Tu. It expresses a condition on the valid
time interval T of a subject X, which is a comparison of the value of the valid time
interval T and a user-defined valid time interval Tu using the Allen operator θ (Allen,
1983). We integrate all Allen operators to express different temporal relationships
(Table 3.2).

A subject X is a set of entities or relationships represented by X ⊆ (E ∪R). A subject
X can be one of the following options:

• all entities of the input TG denoted as E;

• all relationships of the input TG denoted as R;

• all entities belonging to the same entity class of the input TG denoted as lE′ ;

• all relationships belonging to the same relationship type of the input TG denoted as

61

3. PROPOSITION 62

Table 3.2: Predicate Types. In Allen operators, T = [ts, tf [is a valid time interval.
Tu = [x, y[is a user-defined time interval where variables x and y are time instants.

Predicate Type Predicate Description

Attribute

a = w an attribute a has a value equal to w

a <> w an attribute a has a value different from w

a < w an attribute a has a value less than w

a ≤ w an attribute a has a value less or equal than w

a > w an attribute a has a value greater than w

a ≥ w an attribute a has a value greater or equal than w

a BETWEEN w1 AND w2 an attribute a has values within a given range [w1, w2]
a IS NULL an attribute a is null

a IS NOT NULL an attribute a is not null
a STARTS WITH w an attribute a has a string value that starts with w

a END WITH w an attribute a has a string value that ends with w

a CONTAINS w an attribute a has a string value that contains w

Temporal

T < Tu
T precedes Tu

tf < x

Tu > T
Tu is preceded by T

x > tf

T m Tu
T meets Tu

tf = x

T ◦ Tu
T overlaps Tu

(ts < y) AND (tf ≥ x)

T s Tu
T starts Tu

ts = x

T d Tu
T during Tu

(ts ≥ x) AND (tf < y)

T f Tu
T finishes Tu

tf = y

T = Tu
T equals Tu

(ts = x) AND (tf = y)

lR′;

A connector β allows combining different predicates p to evaluate if their combination
is true or false. Here are the list of connectors to combine predicates:

• the AND operator combines multiple predicates, such as π =
{π1 AND π2 AND...AND πn−1 AND πn}. It allows evaluating if all predicates of
the combination are true;

• the OR operator combines multiple predicates, such as π =
{π1 OR π2 OR...OR πn−1 OR πn}. It allows evaluating if at least one of the
predicates of the combination is true;

62

3. PROPOSITION 63

Table 3.3: Matching predicates operator

Operator: matchpredicates(TGinput, π)
Input: an input graph TGinput

a combination of predicates π
Output: a subgraph TGoutput

Actions: 1. TGoutput ←− ⟨∅, ∅⟩
2. If AND ∈ π
3. If ∀πi ∈ π, evaluatepredicate(TGinput, πi) ̸= ∅ then
4. For each πi ∈ π
5. TGoutput ←− TGoutput ∩ evaluatepredicate(TGinput, πi)
6. End For
7. End If
8. Else If OR ∈ π
9. If ∃πi ∈ π that evaluatepredicate(TGinput, πi) ̸= ∅
10. For each πi ∈ π that evaluatepredicate(TGinput, πi) ̸= ∅
11. TGoutput ←− TGoutput ∪ evaluatepredicate(TGinput, πi)
12. End For
13. End If
14. Else If NOT ∈ πi

15. TGoutput ←− TGinput \matchpredicates(TGinput, π)
16. End If

• the NOT operator negates an individual predicate or a combination of predicates,
such as NOT (π1 β...β πn}. It allows evaluating if the predicate or the combination
of predicates is false.

Remark 2. It is possible to select a specific entity or group of entities by using an attribute
predicate in which their identifier idei is the attribute. Let us consider the TG in the
running example (Section 3.1.2). We can analyse a specific student identified as 76 by
using the predicate (STUDENT.id = 76) in the matchpredicates operator.

The algorithm of the execution of the matchpredicates operator is presented in Table 3.3.
According to the connector used in the combination of predicates, the actions done on the
TGinput to extract the output subgraph TGoutput are different. It is important to notice
that the algorithm uses the evaluatepredicate operator which enables, for a given predicate,
to extract the elements of the subject (here, states of entities or relationships) that satisfy
the condition (Table 3.4).

Remark 3. A combination of predicates π may include different connectors. In that case,
users have to parse the combination of predicates π to identify parenthetical expressions
and their respective sub-predicates. They have to identify open and close parentheses to de-
termine the scope of each sub-predicate. Then, the matchpredicates operator will evaluate the
sub-predicates within each parenthetical expression separately, respecting the order of oper-
ations dictated by parentheses. Let us consider π = π1ANDπ2ORπ3ANDπ4ORπ5ORπ6.
Before applying the matchpredicates operator, by applying a parsing of π, we can have
π = π1AND(π2ORπ3)AND(π4ORπ5ORπ6).

Example 1. Let us consider the TG of the running example (Section 3.1.2). Users want

63

3. PROPOSITION 64

Table 3.4: Evaluate predicate operator

Operator: evaluatepredicate(TGinput, πi)
Input: an input graph TGinput = ⟨E, R⟩

a predicate πi = X.c
Output: a subgraph TGoutput = ⟨E ′, R′⟩
Actions: 1. E ′ ← ∅

2. R′ ← ∅
3. If X ⊆ E then
4. For each e ∈ X
5. Get the states of e
6. For each si ∈ Σe(e)
7. If si.c is false then
8. E ′ ←− E \ {si}
9. End If
10. End For
11. End For
12. Else If X ⊆ R then
13. For each r ∈ X
14. Get the states of r
15. For each si ∈ Σr(r)
16. If si.c is false then
17. R′ ←− R \ {si}
18. End If
19. End For
20. End For
21. End If
22. TGoutput ← ⟨E ′, R′⟩
23. Return TGoutput

to know who are the persons who had fever during a period overlapping the period from
day 3 to day 5. This analysis includes a condition on the health state of all entities and
a condition on the occurrence of the state. We can then apply a matchpredicates operation
as follows:

TGoutput = matchpredicates(TG, {E.valid time ◦ [day3, day5] AND E.fever = 1})

For each predicate E.valid time ◦ [day3, day5] and E.fever = 1, the matchpredicates oper-
ator first extracts the subgraph of TG that satisfies the predicate using the evaluatepredicate

(Table 3.4). Second, since the two predicates are combined with the AND connector, the
matchpredicates operator makes the intersection between the two subgraphs obtained in the
previous operation (Table 3.3). As shown in the Fig 3.12, the result is the non-connected
subgraph composed of the states of entities satisfying both predicates.

Example 2. Let us consider the TG of the running example (Section 3.1.2). Users
want to find all socializations between students at day 2 or at day 3. This analysis in-
cludes a condition on the occurrences of relationships labelled SOCIALIZE. So we use
a matchpredicates operation as follows:

64

3. PROPOSITION 65

fever = 1
cough = 1

valid time =
[day1,
day5]

TEACHER
id = 90

6

STUDENT
id = 76

fever = 1
cough = 1

valid time =
[day3, day6]

2

Figure 3.12: Result of the Example 1

3

11
1

Figure 3.13: Result of the Example 2

TGoutput = matchpredicates(TG, {SOCIALIZE.valid time =
day2 OR SOCIALIZE.valid time = day3})

For each predicate SOCIALIZE.valid time = day2 and SOCIALIZE.valid time =
day3, the matchpredicates operator first extracts the subgraph of TG that satisfies the predi-
cate using the evaluatepredicate (Table 3.4). Second, since the two predicates are combined
with the OR connector, the matchpredicates operator makes the union between two sub-
graphs obtained in the first operation (Table 3.3). As shown in the Fig 3.13, the result is
the subgraph TGoutput composed of the states of relationships that satisfy at least one of
the predicates. No relationship state in TG satisfies the second predicate.

Remark 4. In the case an analysis involves a specific graph structure, such as teachers
connected to students, the matchpredicates operator applies operations on each element of
the graph structure. It cannot manipulate directly the graph structure to extract the con-
nections between the elements. For instance, consider that users want to find the following
information: the teachers who had fever from day 3 to day 5 and their interactions with
students during day 1. If we use the matchpredicates operator for this analysis, it will be
written as follows:

TGoutput = matchpredicates(TG, {TEACHER.valid time d [day3, day5]
AND ATTEND CLASS.valid time d day1})

Considering the interconnectivity of entities, users may want to find specific patterns,

65

3. PROPOSITION 66

Table 3.5: Pattern matching operator

Operator: matchpattern(TGinput, P)
Input: a pattern P = (lEi , lRj , lEk , ..., lRm , lEn)
Output: a subgraph TGoutput

Actions: 1. Initialize the position of a label in P to i = 1
2. While i < size(P)− 1
3. TGoutput ← ⟨∅, ∅⟩
4. Extract entities labelled li from TGinput using δE′(li)
5. Extract entities labelled li+2 from TGinput using δE′(li+2)
6. For each eh ∈ δE′(li)
7. For each ef ∈ δE′(li+2)
8. Get the states of eh using Σe(eh)
9. Get the states of ef using Σe(ef)
10. For each sj ∈ Σe(eh)
11. While there exists a state sk ∈ Σe(ef)

such that ρ(sj, sk, li+1) ̸= ∅
12. TGoutput ← TGoutput ∪ ⟨{sj, sk}, {ρ(sj, sk, li+1)}⟩
13. End while
14. End For
15. End For
16. End For
17. i = i +2
18. TGinput ← TGoutput

19. End while
20. Return TGoutput

i.e., particular configurations of relationships between entities. Generally, there are func-
tionalities in existing querying solutions to extract subgraph structures of classic graphs.
However, these subgraph structures do not include time dependent information. We there-
fore propose the matchpattern operator to extract subgraph structures with time dependent
information.

Definition 18. A matchpattern operator returns, for an input graph TGinput, an output
subgraph TGoutput matching a user-defined pattern P that describes a particular structure
of relationships between entities to find in the temporal graph. It is denoted as follows:

matchpattern : TGinput × P → TGoutput

where a pattern P = (lEi , lRj , lEk , ..., lRm , lEn) is a sequence of entity labels linked by rela-
tionship labels. The algorithm of the execution of the operator is presented in Table 3.5.

Example 3. Let us consider the TG of the running example (Section 3.1.2). Users
want to find students who interacted with teachers in classes and socialized with
other students at day 5. The analysis implies to find a specific pattern P =
(STUDENT, SOCIALIZE, STUDENT ′, ATTEND CLASS, TEACHER). We can
then apply a matchpattern operation:

TG1 = matchpattern(TG, (STUDENT, SOCIALIZE, STUDENT ′,

66

3. PROPOSITION 67

ATTEND CLASS, TEACHER))

The matchpattern operator extracts the entities from the first label STUDENT and then
from the third label STUDENT ′ of the user-defined pattern P . Then, it extracts the rela-
tionship states from the second label SOCIALIZE between the two previous entity classes
to construct a subgraph with a pattern STUDENT − SOCIALIZE − STUDENT ′. It
iterates the operation for the next triple - STUDENT ′, ATTEND CLASS, TEACHER
- on the subgraph obtained from the first operation, to construct a subgraph with the whole
pattern STUDENT−SOCIALIZE−STUDENT ′−ATTEND CLASS−TEACHER.

Then, there is a temporal condition (valid time d day5) assigned to two types of in-
teractions of the students: the interactions with other students and the interactions with
teachers. We therefore apply a matchpredicates operation taking the subgraph TG1 resulting
from the previous operation as input:

TG2 = matchpredicates(TG1, {SOCIALIZE.valid time d day5 AND
ATTEND CLASS.valid time d day5})

This operation filters the states of the relationship types SOCIALIZE and
ATTEND CLASS according to the temporal condition. We obtain the subgraph TG2
in Fig 3.14. We observe that only the states of SOCIALIZE and ATTEND CLASS
relationships that satisfy the temporal condition are kept in the result.

3

2

15

16

5
17

Figure 3.14: Result of the Example 3.

To conclude, the two operators we propose fully satisfy the desirable analysis crite-
ria of a querying solution for TG (Section 2.4). The matchpredicates operator allows for
manipulating the attributes of entities (or relationships), their attribute value as well as
the time dimension of TG. Contrary to existing work, it allows fully manipulating the
time dimension by integrating all possible Allen operators. The matchpattern operator

67

3. PROPOSITION 68

allows for manipulating the topology dimension of TG. Regarding the practicality cri-
teria (Section 2.4), both operators provide high levels of user-orientation, composability
and flexibility. TAs hey rely on business-oriented concepts (entities, relationships, states),
users can express easily their queries in a way that directly relates to their domain without
getting bogged down in implementation details. Both operators are composable by taking
a TG as input and output. Since these operators are independent from implementation,
they can be easily modified or be completed by supplementary operators to answer new
user needs. The compatibility criteria of both operators is assessed at the logical and
physical levels.

3.2 Logical Level
In this section, our objective is to satisfy the compatibility of our querying solution. It
implies an implementation of our querying solution within existing technical environments
and without major custom developments. To do so, we propose a logical level of our
querying solution. The logical level provides a data-oriented framework to translate the
conceptual operators into logical operators and independent to technical environments.

Most of current Graph Data Management Systems (GDBMS) support the property
graph data model even if there is no standard specification of this data model (Angles,
2018). It can be considered as a logical data model, i.e., independent of a technical
environement. Similarly, textual query languages of GDBMS relying on the property
graph have common features. We propose to formalize these common features into logical
operators manipulating the property graph model.

3.2.1 Temporal Graph to Property Graph

As a preliminary step, we have to map our conceptual temporal property graph TG into
a logical property graph PG (Angles, 2018) to understand the concepts manipulated into
the logical operators. To do so, as already discussed in Chapter 2, our conceptual model
of temporal graph can be translated to the logical property graph as follows.

A property graph PG = ⟨V, D⟩ is composed of a set of vertices V and a set of edges D.
Each edge is associated to a pair of vertices. Each vertex (or edge) can be labelled. Each
property is a key-value pair. For each state s of an entity e in TG, a vertex is created in
PG with a label corresponding to the label of e and a set of properties corresponding to
the identifier of e, the attributes of s, the start and end instants of the valid time interval
of s. An entity in the property graph corresponds therefore to a set of vertices having
the same identifier. For each state s of a relationship r in TG, an edge is created in
PG by connecting the two vertices corresponding to two states that r links, with a label
corresponding to the label of r and a set of properties corresponding to the attributes
of s, the start and end instants of the valid time interval of s. A relationship in the
property graph corresponds therefore to a set of edges linking the same pair of vertices.
The translation rules and transformation algorithm of our conceptual temporal graph into
the logical property graph are detailed in Chapter 2 Section 5. We present the concepts
we use for the transformation of our conceptual operators into the logical operators in
Table 3.6.

Example 4. Using the translation rules we define, we transform the TG in the running
example in Fig 3.11 into the property graph in Fig 3.15.

68

3. PROPOSITION 69

Temporal graph Property graph
All entities E all vertices V

All relationships R all edges D
a state of an entity s a vertex v

a state of a relationship s an edge d

a label of an entity lE′ a label of a vertex lV ′

a label of a relationship lR′ a label of an edge lD′

an attribute of an entity aei
q a property p

an entity’s identifier idei a property p
an attribute of a relationship ari

d a property p
a valid time interval of an entity state T two properties tb and t∗f

a valid time interval of a relationship state T two properties tb and t∗f

Table 3.6: Transformation rules of our conceptual model into the logical model of property
graph. ∗tb is the start valid time instant of T and tf is the ending valid time instant of T .

3.2.2 Logical Operators

The objective is to translate our conceptual operators into logical operators applicable
to a property graph. To do so, we propose to formalize the three basic operators for
manipulating property graphs found in the literature (Sharma et al., 2021; Angles et al.,
2017). First and foremost, we have the basic graph pattern matching (bgpm) operator
which enables to get subgraph that matches a user-defined pattern. Then, to obtain more
complex patterns, the bgpm operator is extended with relational-like operators. We have
the filter operator to restrict the matches of bgpm to user-defined conditions on properties
and the projection operator to return user-defined output variables.

Definition 19. A basic pattern matching operator consists of extracting a subgraph
PGoutput of an input property graph PGinput = ⟨V, D⟩ that matches a user-defined pattern
Q = (V ′, D′).

bgpm : PGinput ×Q −→ PGoutput

A pattern Q = (V ′, D′) is composed of a set of vertex variables V ′ =
{x1, ..., xn}, where each xi can be a vertex label, and a set of edge variables D′ =
{(x1, y1, x2), ..., (xn−1, yn, xn)}, where each yi can be an edge label. A match h of
Q = (V ′, D′) in PGinput = ⟨V, D⟩ is such that for each vertex xi ∈ V ′ and each edge
(xi, y, xj) ∈ D′ we have h(xi) ∈ V and h(xi, y, xj) ∈ D.

Example 5. Let us consider the property graph in Fig 3.15 denoted as PG. Users want to
extract the interactions between students and teachers, they can use a basic pattern match-
ing operator using the pattern Q = (V ′, D′) where V ′ = {STUDENT, TEACHER} and
D′ = {(STUDENT, ATTEND CLASS, TEACHER)}. So we have:

bgpm(PG, ({STUDENT, TEACHER}, {(STUDENT, ATTEND CLASS,
TEACHER)})

This operation extracts the red subgraph with full lines from the property graph.

Definition 20. A filter operator takes as input a graph PGinput following a pattern Q
(i.e., the result of a bgpm operation) and selects the matches of the pattern that satisfy a
user-defined filter F on a set of variables X ⊆ Q.

69

3. PROPOSITION 70

3

11

2

13

4

5

6

7

8

9

1

13

14

15

18

10

12

16

17

19

20

Figure 3.15: An example of property graph

filter : PGinput × F (X) −→ PGouptut

A filter F (X) = {x1.f1β...βxn.fn} is a combination of constraints, where each con-
straint fi is assigned to a variable xi ∈ X and β is a boolean connector (e.g., AND, NOT,
OR). A variable xi can be either the whole set of vertices V , the whole set of edges D, a
vertex label lV ′ or an edge label lD′. A constraint fi = p θ w is composed by a property p,
a comparison operator θ and a user-defined value w. We denote M ∈ PGinput the set of
matches to Q. For each match m ∈ M , if F (X) = true and X ⊆ Q, then PGoutput =
PGoutput ∪m. After evaluating all matches, if PGoutput is empty, it means that there are

70

3. PROPOSITION 71

no matches that satisfy the filter.

Example 6. Let us consider the property graph in Fig 3.15. If users want to
extract the interactions between students and teachers during day 1, they can use
the filter operator using as input the bgpm operation in Example 5 and then apply
the filter F (ATTEND ClASS) = {ATTEND CLASS.start valid time ≥ day 1 00 :
00am AND ATTEND CLASS.end valid time < day 2 00 : 00am}. This operation re-
sults on the extraction of the red subgraph with dotted lines.

Definition 21. A projection operator takes as input the output graph of another operation
PGinput and selects a subset of this input graph PGouptut according to user-defined selected
output variables O.

project : PGinput ×O −→ PGouptut

An output graph can be selected properties of a vertex (or edge) label to only show the value
of properties in the result, or the whole subgraph resulting from the previous operation. In
other terms, for each vertex (or edge) in PGinput, only the properties specified in the set
O are retained, while all other properties are discarded.

Example 7. Let us consider the property graph in Fig 3.15. If users want to show the
identifiers of all persons of the property graph, we can apply the projection operator using
O = {STUDENT.id, TEACHER.id} and taking as input the result of a bgpm operation
(see Example 5).

3.2.3 Mapping Conceptual Operators to Logical Operators

In this section, we define translation rules of our conceptual operators into logical opera-
tors. The algorithms of our proposed operators (Tables 3.3 and 3.5) define the scope of
the sequence of logical operators.

The conceptual operator matchpredicates(TG, π) can be translated at the logical level
through the execution of the filter operator PG1 = filter(PG, F (X)) where the com-
bination of predicates π is mapped to the filter F (X). Then, the projection operator
PG2 = project(PG1, PG1) enables to return the graph resulting from the previous opera-
tion. To do so, we propose a transformation process between the conceptual matchpredicates

and logical operators via the Algorithm 2. It consists mainly in transforming the combi-
nation of predicates π ∈ matchpredicates(TG, π) into the filter F (X) ∈ filter(PG, F (X))
as the following:

1. Each connector β ∈ π is the same as each connector β ∈ F (X).

2. Each attribute predicate πi = X.a θ w ∈ π is directly translated into each constraint
xi.fi ∈ F (X) such that xi = X and fi = p θ w. An attribute a in TG corresponds
to a property in PG (Table 3.6).

3. Each temporal predicate πi = X.T α Tu ∈ π can be mapped to two constraints
xi.fi ∈ F (X). Since the valid time interval T in TG corresponds to two properties
tb and tf in PG (Table 3.6), it is translated to xi.tbθw1 AND xi.tfθw2. The Allen
operators α in πi are translated to a comparison operator θ. To do so, the Table 3.2
describes Allen operators using comparison operators. The user-defined time inter-

71

3. PROPOSITION 72

val Tu is translated to two values w1 and w2 representing respectively the start valid
time instant of Tu and the end valid time instant of Tu.

4. Each subject X ∈ πi corresponds to xi ∈ xi.fi such that:

• if the subject is all entities in TG (X = E) then xi = V , i.e., all vertices in
PG;

• if the subject is all relationships R in TG (X = R), then xi = D, i.e., all edges
in PG;

• if the subject is all entities belonging to the class lE′ in TG (X = lE′), then
xi = lV ′ = lE′ , i.e., to all vertices having the vertex label lV ′ = lE′ in PG;

• if the subject is all relationships belonging to the type lR′ in TG (X = lR′),
xi = lD′ = lR′ , i.e., to all edges having the edge label lD′ = lR′ in PG;

As a result of the Algorithm 2, we obtain translation rules of the conceptual operator
matchpredicates(TG, π) into logical operators in Table 3.7.

The conceptual operator matchpattern(TG, P) can be translated at the logical level
through the execution of the basic pattern matching operator bgpm(PG, Q) where the
pattern P is mapped to the pattern Q. Then, it uses the projection operator as in
the chain of operations of matchpredicates to get the result set. To do so, we propose a
transformation process between the conceptual matchpattern and logical operators via the
Algorithm 3. It consists mainly in transformation of the pattern P of matchpattern(TG, P)
to the pattern Q of bgpm(PG, Q) as the following:

1. Each entity label lE′ ∈ P is translated to a vertex label xi = lV ′ = lE′ ∈ Q.

2. Each relationship label lR′ ∈ P is translated to an edge label xi = lD = lR′ ∈ Q.

As a result of the Algorithm 3, we obtain translation rules of the conceptual operator
matchpattern(TG, P) into logical operations in Table 3.8. In conclusion, our two concep-
tual operators for temporal graph data have high compatibility with property graph-based
environments. Indeed, they can be translated to property graph operators without diffi-
culty using the mapping rules and algorithms we propose.

72

3. PROPOSITION 73

Algorithm 2: Mapping algorithm: from matchpredicates to logical property graph
operators

Input: a Temporal Graph TG = ⟨E, R⟩ transformed into a Property Graph PG = ⟨V, D⟩, the
matchpredicates(TG, π) operator, a user-defined combination of predicates πi

Output: PG1 = bgpm(PG, Q)
PG2 = filter(PG, F (X))
PG3 = project(PG2, PG2)

1 Create a filter F (X)
2 foreach πi ∈ π do
3 if πi = X.a θ w then
4 Get a property p ∈ PG a such that p = a
5 if X = E then
6 Create xi.fi = V.p θ w
7 F (X) = F (X) + βxi.fi where β is preceeding πi in π

8 else if X = lE′ then
9 Create xi.fi = lV ′

.p θ w where lV ′ = lE′

10 F (X) = F (X) + βxi.fi where β is preceeding πi in π

11 else if X = R then
12 Create xi.fi = D.p θ w
13 F (X) = F (X) + βxi.fi where β is preceeding πi in π

14 else if X = lR′ then
15 Create xi.fi = lD′

.p θ w where lD′ = lR′

16 F (X) = F (X) + βxi.fi where β is preceeding πi in π

17 else if πi = X.T α Tu then
18 Get the property tb ∈ PG such that tb is the start valid time instant of T ∈ TG
19 Get the property tf ∈ PG such that tf is the end valid time instant of T ∈ TG
20 Create the value w1 as the start valid time instant of Tu

21 Create the value w2 as the end valid time instant of Tu

22 if X = E then
23 Create xi.fi = V.tb θ w1 AND V.tf θ w2
24 F (X) = F (X) + βxi.fi where β is preceeding πi in π

25 else if X = lE′ then
26 Create xi.fi = lV ′

.tb θ w1 AND lV ′
.tf θ w2 where lV ′ = lE′

27 F (X) = F (X) + βxi.fi where β is preceeding πi in π

28 else if X = R then
29 Create xi.fi = D.tb θ w1 AND D.tf θ w2
30 F (X) = F (X) + βxi.fi where β is preceeding πi in π

31 else if X = lR′ then
32 Create xi.fi = lD′

.tb θ w1 AND lD′
.tf θ w2 where lD′ = lR′

33 F (X) = F (X) + βxi.fi where β is preceeding πi in π

34 Use F (X) as input of a filter operation on PG
35 Apply PG1 = bgpm(PG, Q)
36 Apply PG2 = filter(PG1, F (X))
37 Create the output variables O
38 O ←− PG2
39 Apply PG3 = project(PG2, O)

73

3. PROPOSITION 74

Conceptual
Level

Logical
Level

(1) a matchpredicates

operation matchpredicates(TG, π)
PG1 = bgpm(PG, X)

PG2 = filter(PG1, F (X))
PG3 = project(PG2, PG2)

(2) a matchpredicates

with a combination of predicates
matchpredicates(TG,
{π1 β...β πn})

PG1 = bgpm(PG, X)
PG2 = filter(PG1, x1.f1β...βxn.fn)

PG3 = project(PG2, PG2)

(3) matchpredicates with
an attribute predicate

matchpredicates(TG,
X.a θ w)

PG1 = bgpm(PG, xi)
PG2 = filter(PG, xi.p θ w)
PG3 = project(PG2, PG2)

(4) a matchpredicates

with an attribute predicate
on the subject E

matchpredicates(TG,
E.a θ w)

PG1 = bgpm(PG, V)
PG2 = filter(PG1, V.p θ w)
PG3 = project(PG2, PG2)

(5) a matchpredicates

with an attribute predicate
on the subject lE′

matchpredicates(TG,
lE′

.a θ w

PG1 = bgpm(PG, lV ′)
PG2 = filter(PG1, lV ′

.p θ w)
PG3 = project(PG2, PG2)

(6) a matchpredicates

with an attribute predicate
on the subject R

matchpredicates(TG,
R.a θ w)

PG1 = bgpm(PG, D)
PG2 = filter(PG1, D.p θ w)
PG3 = project(PG2, PG2)

(7) a matchpredicates

with an attribute predicate
on the subject lR′

matchpredicates(TG,
lR′

.a θ w)

PG1 = bgpm(PG, lD′)
PG2 = filter(PG1, lD′

.p θ w)
PG3 = project(PG2, PG2)

(8) matchpredicates

with a temporal predicate
matchpredicates(TG,

X.T α Tu)

PG1 = bgpm(PG, xi)
PG2 = filter(PG1, xi.tbθ w1

AND
xi.tfθ w2)

PG3 = project(PG2, PG2)

(9) a matchpredicates

with a temporal predicate
on the subject E

matchpredicates(TG,
E.T α Tu)

PG1 = bgpm(PG, V)
PG2 = filter(PG1, V.tbθ w1

AND
V.tfθ w2)

PG3 = project(PG3, ∅)

(10) a matchpredicates

with a temporal predicate
on the subject lE′

matchpredicates(TG,
lE′

.T α Tu)

PG1 = bgpm(PG, lV ′)
PG2 = filter(PG1, lV ′

.tbθ w1
AND

lV ′
.tfθ w2)

PG3 = project(PG2, PG2)

(11) a matchpredicates

with a temporal predicate
on the subject R

matchpredicates(TG,
R.T α Tu)

PG1 = bgpm(PG, D)
PG2 = filter(PG1, D.tbθ w1

AND
D.tfθ w2)

PG3 = project(PG3, PG3)

(12) a matchpredicates

with a temporal predicate
on the subject lR′

matchpredicates(TG,
lR′

.T α Tu)

PG1 = bgpm(PG, lD′)
PG2 = filter(PG1, lD′

.tbθ w1
AND

lD′
.tfθ w2)

PG3 = project(PG2, PG2)

Table 3.7: Translation rules of matchpredicates operator

74

3. PROPOSITION 75

Algorithm 3: Mapping algorithm: from matchpattern(TG, P) to logical property
graph operations

Input: a Temporal Graph TG = ⟨E, R⟩ transformed into a Property Graph PG = ⟨V, D⟩
the matchpattern(TG, P) operator, a user-defined pattern P
Output: PG1 = bgpm(PG, Q)
PG2 = project(PG1, PG1)

1 Create a pattern Q = (V ′, D′)
2 foreach triple (lEi , lRj , lEk) ∈ P do
3 Get a vertex label lVi ∈ PG such that lVi = lEi

4 Get a vertex label lVk ∈ PG such that lVk = lEk

5 Get an edge label lDj ∈ PG such that lDj = lRj

6 V ′ ←− V ′ ∪ {lVi , lVk}
7 D′ ←− D′ ∪ {(lVi , lDj , lVk)}
8 Use Q as input of a bgpm operation on PG
9 Apply PG1 = bgpm(PG, Q)

10 Create the output variables O
11 O ←− PG1
12 Apply PG2 = project(PG1, O)

Conceptual
Level

Logical
Level

(1) a matchpattern

operation
matchingpattern(TG, P) PG1 = bgpm(PG, Q)

PG2 = project(PG1, PG1)

(2) a matchpattern

with a specific pattern P

matchpattern(TG,

(lEi, lRj , lEk)

PG1 = filter(PG,

({lVi, lVk}, {(lVi, lDj , lVk)})
PG2 = project(PG1, PG1)

Table 3.8: Implementation of matchpattern operator

3.3 Physical Level
In this section, we define translation rules of logical operators into some textual query
languages (QL) of GDBMS supporting the property graph model. We choose the textual
query languages of two GDBMS : (i) Cypher of Neo4j because it is widely used in the
scientific community (Debrouvier et al., 2021; Cattuto et al., 2013) and in the industry
(Tian, 2022), and (ii) OrientDB’s QL because it is used in the projects of ACTIVUS
Group.

Operators at the logical level are translated into a query written in a QL. A query in
QL is made from several clauses chained together. The semantics of a query in QL are
defined by the chain of its clauses.

In Neo4j and OrientDB’s QL, the MATCH clause allows specifying a pattern we
search in a database. A basic graph pattern matching operation (bgpm(PG, Q)) at the
logical level is then achieved by formulating a query in Neo4j and OrientDB’s QL using
the MATCH clause followed by the pattern. The construction of such queries is detailed
in Table 3.9.

75

3. PROPOSITION 76

In Neo4j and OrientDB’s QL, the WHERE clause is not a clause in its own right.
It is part of the MATCH clause. WHERE adds constraints to the pattern described
in MATCH. A filter operation (filter(PG, F (x))) at the logical level is then achieved
by formulating a query in Neo4j and OrientDB’s QL using the WHERE clause. The
construction of such queries is detailed in Table 3.10.

In Neo4j and OrientDB’s QL, the RETURN clause defines the parts of a pattern
(vertices, edges, and/or properties) to be included in the query result. It is one of the
last clauses in a query. A projection operation (project(PG, O)) at the logical level is
then achieved by formulating a query in Neo4j and OrientDB’s QL using the RETURN
clause. The construction of such queries is detailed in Tables 3.9 and 3.10.

It is important to notice there are operators in Neo4j and OrientDB’s QL that have
the same semantics as comparison operators θ in predicates at the logical level. We can
find more details of the semantics and syntax of Neo4j and OrientDB’s QL respectively at
https://neo4j.com/docs/cypher-manual/current/syntax/ and https://orientdb.
com/docs/2.2.x/SQL-Match.html.

We observe in Tables 3.9 and 3.10 that Neo4j and OrientDB’s QL include sufficient
functionalities to easily implement our conceptual operators. In other environments, our
proposed operators could not be easily implementable into QL. Due to the rich func-
tionalities of the Neo4j and OrientDB’s QL, the mapping of our operators is direct and
simple.

In conclusion, our two conceptual operators for temporal graph data can be actually
implemented into textual query languages for the property graph model. This is possi-
ble because our conceptual operators are translatable directly to logical property graph
operators in the Section 3.2.3. Therefore, our conceptual operators can be implemented
into textual query languages for the property graph model (i.e, textual query languages
embedding the functionalities of the logical property graph operators).

Conceptual
Level

Physical
Level

Neo4j QL (Cypher) OrientDB QL
(1) a matchpattern

operation
matchingpattern(TG, P) MATCH pattern

RETURN ∗
MATCH{pattern}

RETURN ∗
(2) a matchpattern

with a specific pattern P

matchpattern(TG,

(lEi, lRj , lEk)
MATCH (object1 : lVi)− (object2 : lDj)− (object3 : lVk)

RETURN ∗
MATCH{class : lVi}.outE(lDj).inV (lVk)

RETURN ∗

Table 3.9: Implementation of matchpattern operator

76

https://neo4j.com/docs/cypher-manual/current/syntax/
 https://orientdb.com/docs/2.2.x/SQL-Match.html
 https://orientdb.com/docs/2.2.x/SQL-Match.html

4. EXPERIMENTAL ASSESSMENTS 77

Conceptual
Level

Physical
Level

Cypher OrientDB

(1) a matchpredicates

operation matchpredicates(TG, π)
MATCHpattern

WHERE constraints
RETURN ∗

MATCH {pattern,
where : constraints}

RETURN ∗

(2) a matchpredicates

with a combination of predicates
matchpredicates(TG,
{π1 β..β πn})

MATCH(object)
WHERE constraint1 β, ...β constraintN

RETURN ∗

MATCH {object,
where : constraint1 β, ...β constraintN}

RETURN ∗

(3) a matchpredicates with
an attribute predicate

matchpredicates(TG,
X.a θ w)

MATCH (object)
WHERE object.pθ w

RETURN ∗

MATCH {class : object,
where : (pθ w)}

RETURN ∗
(4) a matchpredicates

with an attribute predicate
on the subject E

matchpredicates(TG,
E.a θ w)

MATCH (n)
WHERE n.p θ w

RETURN ∗

MATCH {class : V,
where : p θ w}
RETURN ∗

(5) a matchpredicates

with an attribute predicate
on the subject lE′

matchpredicates(TG,
lE′

.a θ w)

MATCH (n : lV ′)
WHERE n.p θ w

RETURN ∗

MATCH {class : lV ′
,

where : p θ w}
RETURN ∗

(6) a matchpredicates

with an attribute predicate
on the subject R

matchpredicates(TG,
R.a θ w

MATCH()− [r]− ()
WHERE r.p θ w

RETURN ∗

MATCH {class : D
where : p θ w}
RETURN ∗

(7) a matchpredicates

with an attribute predicate
on the subject lR′

matchpredicates(TG,
lR′

.a θ w)

MATCH()− [r : lD′]− ()
WHERE r.p θ w

RETURN ∗

MATCH {class : lD′

where : p θ w}
RETURN ∗

(8) a matchpredicates

with a temporal predicate
matchpredicates(TG,

X.T α Tu)

MATCH (object)
WHERE object.tbθ w1

AND
object.tfθ w2
RETURN ∗

MATCH {class : object,
where : tbθ w1

AND
tfθ w2}

RETURN ∗

(9) a matchpredicates

with a temporal predicate
on the subject E

matchpredicates(TG,
E.T α Tu)

MATCH (n)
WHERE n.tbθ w1

AND
n.tfθ w2

RETURN ∗

MATCH {class : V,
where : tbθ w1

AND
tfθ w2}

RETURN ∗

(10) a matchpredicates

with a temporal predicate
on the subject lE′

matchpredicates(TG,
lE′

.T α Tu)

MATCH (n; lV ′)
WHERE n.tbθ w1

AND
n.tfθ w2

RETURN ∗

MATCH {class : lV ′
,

where : tbθ w1
AND

tfθ w2}
RETURN ∗

(11) a matchpredicates

with a temporal predicate
on the subject R

matchpredicates(TG,
R.T α Tu)

MATCH()− [r]− ()
WHERE r.tbθ w1

AND
r.tfθ w2

RETURN ∗

MATCH {class : D
where : tbθ w1

AND
tfθ w2}

RETURN ∗

(12) a matchpredicates

with a temporal predicate
on the subject lR′

matchpredicates(TG,
lR′

.T α Tu)

MATCH()− [r : lD′]− ()
WHERE r.tbθ w1

AND
r.tfθ w2

RETURN ∗

MATCH {class : lD′

where : tbθ w1
AND

tfθ w2}
RETURN ∗

Table 3.10: Implementation of matchpredicates operator

4 Experimental Assessments
We run experiments with the objective of validating the feasibility of our proposed oper-
ators through their implementation in technical environments.

4.1 Technical Environment
Our experiments are conducted on a PowerEdge R630, 16 CPUs x Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40Ghz, 63.91 GB. Two virtual machines are installed on this
hardware. Each virtual machine has 6 GB in terms of RAM and 100 GB in terms
of disk size. On each of the two virtual machines, we installed respectively a graph
database compatible with the property graph model: (i) Neo4j (version 4.1.3) and
(ii) OrientDB (version 3.0.4). To avoid any bias in the disk management, we did
not use any customized optimization techniques, but relied on default tuning of Neo4j

77

4. EXPERIMENTAL ASSESSMENTS 78

Table 3.11: Characteristics of datasets. Y= Yes, N= No, AV = Attribute Value, AS =
Attribute Set, T = Topology.

Implementation Social Experiment Citibike
Number of vertices 33 934 2 861
Number of edges 2 168 270 27 561 618
Evolution types of entities AV, T AV, AS, T
Evolution types of relationships T AV, AS, T

and OrientDB. The technical details of our experiments are available on the website
https://gitlab.com/2573869/queryingtemporalpropertygraphs.

4.2 Datasets
We use the Social Experiment 7 and the Citibike 8 real datasets from our previous experi-
ments. We can therefore find more details about those datasets in Section 7 of Chapter 2.

The objective of using data coming from different sources is to guarantee that our
datasets cover different domains to formulate different analyses. On the one hand, the
Social Experiment dataset is about epidemiological contagion among students of a dormi-
tory. The dataset traces the changes in the students’ symptoms (fever, cough, depression,
etc.) and the different types of interactions they have over time (proximity, closefriend,
socialize, etc.). On the other hand, the Citibike dataset is about biking trips in New York
City using bikes of the Citibike company. The dataset traces the trips of users between
stations with the characteristics of the trips (identifier of the bike, user type, birth year
of the user, trip duration, start and end time of the trip) as well as the characteristics of
stations (station name, latitude and longitude).

Both datasets were transformed into a temporal graph based on the translation rules
defined in Section 4 of Chapter 2. Then, we store both datasets in Neo4j and OrientDB by
applying the translation rules of the temporal graph into the property graph in Section 5
of Chapter 2. We can find in Table 3.11 the details of both implementations.

4.3 Benchmark Analyses
We define 7 types of analyses to be run on our datasets. They correspond to the types of
analyses we can formulate over the different dimensions of datasets:

• (1) analysis including attribute dimension only;

• (2) analysis including time dimension only;

• (3) analysis including attribute and time dimensions;

• (4) analysis including topology dimension only;

• (5) analysis including topology and attribute dimensions;

• (6) analysis including topology and time dimensions;
7http://realitycommons.media.mit.edu/socialevolution.html
8https://www.citibikenyc.com/system-data

78

https://gitlab.com/2573869/queryingtemporalpropertygraphs
http://realitycommons.media.mit.edu/socialevolution.html
https://www.citibikenyc.com/system-data

4. EXPERIMENTAL ASSESSMENTS 79

Table 3.12: Queries on the Social Experiment Dataset

Query Dimension

(1) Which students had a fever or cough? attribute

(2) What is the health status of students at the day 2009-03-06? time

(3) Which students started to have a fever at the day 2009-03-06? attribute, time

(4) Which students are close friends and make social activities together? topology

(5) Which students had a fever and were close physically

to other students that had a cough?
topology, attribute

(6) Which students were close physically during the day 2009-03-06? topology, time

(7) Which students had a fever and were close physically

to other students that had a cough during the day 2009-03-06?
topology, attribute, time

• (7) analysis including topology, attribute and time dimensions;

By crossing the different dimensions of datasets in analyses, this distributes possible query
scenarios in a balanced way.

By using the previous types of analyses, we write business analyses, identified by 1
to 7, for the Social Experiment Dataset in Table 3.12 and for the Citibike Dataset in
Table 3.13. To translate these business analyses into queries, we will apply the following
process. For each analysis, queries will be written differently according to the dataset. We
will therefore associate each analysis with the letter a) if it concerns the Social Experiment
Dataset and the letter b) is it concerns the Citibike Dataset. For each analysis, we can
implement it differently. We will therefore associate the number (i) for the implementation
in Neo4j’s query language and the number (ii) for the implementation in OrientDB’s query
language. Therefore, we will have a total of 28 queries (7 business analyses× 2 datasets×
2 implementations) .

4.4 Experimental Results
In this section, we present the translation of the business analyses presented in the previous
section from the conceptual level (conceptual operators) to the physical level (queries). To
so, we apply the translation rules from the conceptual level to the logical level presented
in Section 3.2 and the guidelines for translating from the logical level to the physical level
in Section 3.3.

At the conceptual and logical levels, the business analyses and datasets are taken
into account. At the physical level, the implementation into Neo4j and OrientDB graph
database systems and their textual query languages are taken into account. Queries
are represented following the method presented in the previous section. For example, if
the first business analysis of the Social Experiment is implemented in the Neo4j’s query
language, it will be referred as 1.a).(i).

79

4. EXPERIMENTAL ASSESSMENTS 80

Table 3.13: Queries on the Citibike Dataset

Query Dimension

(1) What are the geographical coordinates of the station of Clinton St & GrandSt? attribute

(2) Retrieve trips during the day 2021-01-28 time

(3) Retrieve trips during the day 2021-01-28 that are made by subscribers attribute, time

(4) Retrieve triplets of stations linked by trips topology

(5)
Retrieve the trips of bikes (i.e., the identifiers of bikes is the same accross trips)

passing through three stations and starting

at the station ‘1 Ave & E 30 St ’

topology, attribute

(6) Retrieve triplets of stations linked by trips during the day 2021-01-28 topology, time

(7)
Retrieve the trips of bikes passing through three stations

starting at the station ‘1 Ave & E 30 St ’

and starting at the day 2021-01-28.

topology, attribute, time

4.4.1 Analyses including Attribute Dimension

For the business analyses numbered 1, including attribute dimension only, we have the
following translation process:

At the conceptual level:
1.a) TG1 = matchpredicates(TG, {STUDENT.(fever = 1) OR STUDENT.cough = 1)
1.b) TG1 = matchpredicates(TG, {STATION.stationname =′ Clinton St & Grand St′})

At the logical level:
1.a) PG1 = bgpm(PG, ({STUDENT}, {})
PG2 = filter(PG1, STUDENT.fever = 1 OR STUDENT.cough)
PG3 = project(PG2, PG2)
1.b) PG1 = bgpm(PG, ({STATION}, {})
PG2 = filter(PG1, STATION.stationname =′ Clinton St & Grand St′)
PG3 = project(PG2, PG2)

At the physical level:
1.a).(i) MATCH(s : Student) WHERE s.fever =′ 1′OR s.cough =′ 1′RETURN∗
1.a).(ii) MATCH{class : Student, where : (fever =′ 1′) OR (cough =′ 1′)}RETURN∗
1.b).(i) MATCH(s : Station) WHERE s.stationname =′ Clinton St & Grand St′

RETURN∗
1.b).(ii) MATCH{class : Station, where : (stationname =′ Clinton St & Grand St′)}
RETURN∗

80

4. EXPERIMENTAL ASSESSMENTS 81

4.4.2 Analyses including Time Dimension

For the business analyses numbered 2, including time dimension only, we have the follow-
ing translation process:

At the conceptual level:
2.a) TG1 = matchpredicates(TG, {STUDENT.T ◦ [2009− 03− 06, 2009, 2009− 03− 07[})
2.b) TG1 = matchpredicates(TG, {TRIP.T d [2021− 01− 28, 2021− 01− 29[})

At the logical level:
2.a)PG1 = bgpm(PG, ({STUDENT}, {})
PG2 = filter(PG1, STUDENT.startvalidtime < 2009− 03− 07 AND
STUDENT.endvalidtime ≥ 2009− 03− 06)
PG3 = project(PG2, PG2)
2.b) PG1 = bgpm(PG, ({TRIP}, {})
PG2 = filter(PG1, TRIP.startvalidtime ≥ 2021− 01− 28 AND
TRIP.endvalidtime < 2021− 01− 29)
PG3 = project(PG2, PG2)

At the physical level:
2.a).(i) MATCH(s : Student)
WHERE datetime(s.startvalidtime) < datetime(′2009− 03− 07′)
AND datetime(s.endvalidtime) ≥ datetime(′2009− 03− 06′) RETURN∗
2.a).(ii) MATCH{class : Student, where : (startvalidtime.asdatetime().format(′yyyy−
MM − dd′) < datetime(′2009 − 03 − 07′,′ yyyy − MM − dd′).format(′yyyy −
MM − dd′) AND endvalidtime.asdatetime().format(′yyyy − MM − dd′) >=
datetime(′2009− 03− 06′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′)}RETURN∗
2.b).(i) MATCH(t : TRIP) WHERE datetime(t.startvalidtime) ≥ datetime(′2021 −
01− 28′)
AND datetime(t.endvalidtime) < datetime(′2021− 01− 29′)
RETURN∗
2.b).(ii)MATCH{class : Trip, where : (startvalidtime.asDate().format(′yyyy −
MM − dd′ ≥ date(′2021− 01− 28′,′ yyyy−MM − dd′).format(′yyyy−MM − dd′) AND
(endvalidtime.asDate().format(′yyyy −MM − dd′)
>= date(′2021− 01− 29′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′)}
RETURN∗

4.4.3 Analyses including Attribute and Time Dimensions

For the business analyses numbered 3, including attribute and time dimensions, we have
the following translation process:

At the conceptual level:
3.a) TG1 = matchpredicates(TG, {STUDENT.fever = 1 AND STUDENT.T s [2009 −
03− 06, 2009− 03− 07[)})
3.b) TG1 = matchpredicates(TG,
{TRIP.T d [2021− 01− 28, 2021− 01− 29[AND
TRIP.usertype =′ Subscriber′})

81

4. EXPERIMENTAL ASSESSMENTS 82

At the logical level:
3.a)PG1 = bgpm(PG, ({STUDENT}, {})
PG2 = filter(PG1, STUDENT.fever = 1 AND STUDENT.startvalidtime = 2009 −
03− 06)
PG3 = project(PG2, PG2)
3.b) PG1 = bgpm(PG, ({TRIP}, {})
PG2 = filter(PG1, TRIP.startvalidtime ≥ 2021− 01− 28 AND TRIP.endvalidtime <
2021− 01− 29 AND TRIP.usertype =′ Subscriber′)
PG3 = project(PG2, PG2)

At the physical level:
3.a).(i) MATCH(s : Student) WHEREfever = 1 AND datetime(s.startvalidtime) =
datetime(′2009− 03− 06′) RETURN∗
3.a).(ii) MATCH{class : Student, where : (fever =′ 1′) AND
(startvalidtime.asdatetime().format(′yyyy − MM − dd′) = datetime(′2009 − 03 −
06′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′)}RETURN∗
3.b).(i) MATCH(t : TRIP) WHERE date(t.startvalidtime) ≥ date(′2021 − 01 −
28′) AND time(t.endvalidtime) < time(′2021− 01− 29′) AND t.usertype =′ Subscriber′

RETURN∗
3.b).(ii) MATCH{class : Trip, where : (startvalidtime.asDate().format(′yyyy −
MM −dd′) ≥ date(′2021−01−28′,′ yyyy−MM −dd′).format(′yyyy−MM −dd′) AND
(endvalidtime.asDate().format(′yyyy −MM − dd′)
>= date(′2021− 01− 29′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′)
AND (usertype =′ Substriber′)}
RETURN∗

4.4.4 Analyses including Topology Dimension

For the business analyses numbered 4, including topology dimension only, we have the
following translation process:

At the conceptual level:
4.a) TG1 = matchpattern(TG, (STUDENT1, CLOSEFRIEND, STUDENT2,
SOCIALIZE, STUDENT1))
4.b) TG1 = matchpattern(TG, (STATION1, TRIP1, STATION2, TRIP2, STATION3))

At the logical level:
4.a) PG1 = bgpm(PG, ({STUDENT1, STUDENT2},
{(STUDENT1, CLOSEFRIEND, STUDENT2),
(STUDENT1, SOCIALIZE, STUDENT2)})
PG2 = project(PG1, PG1)
4.b) PG1 = bgpm(PG, ({STATION1, STATION2, STATION3}, {(STATION1, TRIP1,
STATION2)(STATION2, TRIP2, STATION3)})
PG2 = project(PG1, PG1)

At the physical level:

82

4. EXPERIMENTAL ASSESSMENTS 83

4.a).(i) MATCH(s1 : Student)−[c : Closefriend]−(s2 : Student)−[s : Socialize]−(s1 :
Student) RETURN∗
4.a).(ii) MATCH{class : Student, as : s1}.outE(CloseFriend).inV (Student){as : s2}
.outE(Socialize).inV (s1)
RETURN∗
4.b).(i) MATCH(s1 : Station) − [t1 : Trip] − (s2 : Station) − [t2 : Trip] − (s3 :
Station) RETURN∗
4.b).(ii) MATCH{class : Station, as : s1}.outE(Trip)
.inV (Station){as : s2}.outE(Trip).inV (Station){as : s3}
RETURN∗

4.4.5 Analyses including Topology and Attribute Dimensions

For the business analyses numbered 5, including topology and attribute dimensions, we
have the following translation process:

At the conceptual level:
5.a) TG1 = matchpredicates(TG, {STUDENT1.(fever = 1) AND STUDENT2.(cough =
1)})
TG2 = matchpattern(TG1, (STUDENT1, PROXIMITY, STUDENT2))
5.b) TG1 = matchpredicates(TG, {STATION1.stationname =′ 1 Ave & E 30 St AND
TRIP1.bikeid = TRIP2.bikeid})
TG2 = matchpattern(TG, (STATION1, TRIP1, STATION2, TRIP2, STATION3))

At the logical level:
5.a)PG1 = bgpm(PG, {STUDENT1, STUDENT2}, {PROXIMITY })
PG2 = filter(PG1, STUDENT1.fever = 1 AND STUDENT2.cough = 1)
PG3 = project(PG2, PG2)
5.b) PG1 = bgpm(PG, ({STATION1, STATION2, STATION3},
{(STATION1, TRIP1, STATION2), (STATION2, TRIP2, STATION3)})
PG2 = filter(PG1, STATION.stationname =′ 1 Ave & E, 30 St′AND
TRIP1.bikeid = TRIP2.bikeid)
PG3 = project(PG2, PG2)

At the physical level:
5.a).(i) MATCH(s1 : Student)− [p : Proximity]− (s2 : Student) WHERE s1.fever =
1 AND s2.cough = 0
RETURN∗
5.a).(ii) MATCH{class : Student, as : s1, where : fever = 1}.outE(Proximity)
.inV (Student){as : s2, where : cough = 1}) RETURN∗
5.b).(i) MATCH(s1 : Station) − [t1 : Trip]− > (s2 : Station) − [t2 : Trip]− > (s3 :
Station)
WHERE s1.stationname =′ 1 Ave & E, 30 St′AND t1.bikeid = t2.bikeid
RETURN∗
5.b).(ii) MATCH{class : Station, as : s1, where : (stationname =′ 1 Ave & E, 30 St′)}
.outE(Trip){as : t1}.inV (Station){as : s2}
.outE(Trip){as : t2, where : (bikeid = $matched.(t1.bikeid)}.inV (Station){as : s3}

83

4. EXPERIMENTAL ASSESSMENTS 84

RETURN∗

4.4.6 Analyses including Topology and Time Dimensions

For the business analyses numbered 6, including topology and time dimensions, we have
the following translation process:

At the conceptual level:
6.a) TG1 = matchpredicates(TG, {PROXIMITY.(T d [2009− 03− 06, 2009− 03− 07[)})
TG2 = matchpattern(TG1, (STUDENT1, PROXIMITY, STUDENT2)
6.b) TG1 = matchpredicates(TG, {TRIP1.T d [2021− 01− 28, 2021− 01− 29[AND
TRIP2.T d [2021− 01− 28, 2021− 01− 29[)}
TG2 = matchpattern(TG, (STATION1, TRIP1, STATION2, TRIP2, STATION3))

At the logical level:
6.a) PG1 = bgpm(PG, {STUDENT1, STUDENT2}, {PROXIMITY })
PG2 = filter(PG1, PROXIMITY.startvalidtime ≥ 2009− 03− 06 AND
PROXIMITY.endvalidtime < 2009− 03− 07
PG3 = project(PG2, PG2)
6.b) PG1 = bgpm(PG, ({STATION1, STATION2, STATION3},
{(STATION1, TRIP1, STATION2), (STATION2, TRIP2, STATION3)})
PG2 = filter(PG1, TRIP.startvalidtime ≥ 2021− 01− 28 AND
TRIP.endvalidtime < 2021− 01− 29)
PG3 = project(PG2, PG2)

At the physical level:
6.a).(i) MATCH(s1 : Student)− [p : Proximity]− (s2 : Student)
WHEREdatetime(p.startvalidtime) ≥ datetime(′2009− 03− 06′) AND
datetime(p.endvalidtime) < datetime(′2009− 03− 07′)
RETURN∗
6.a).(ii) MATCH{class : Student, as : s1}.outE(Proximity){as : p, where :
(startvalidtime.asdatetime().format(′yyyy − MM − dd′) ≥ datetime(′2009 − 03 −
06′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′) AND (endvalidtime.asdatetime()
.format(′yyyy−MM−dd′) < datetime(′2009−03−07′,′ yyyy−MM−dd′).format(′yyyy−
MM − dd′)}.inV (Student){as : s2}
RETURN∗
6.b).(i) MATCH(s1 : Station) − [t1 : Trip]− > (s2 : Station) − [t2 : Trip]− > (s3 :
Station)
WHEREdatetime(t.startvalidtime) ≥ datetime(′2021− 01− 28′) AND
datetime(t.endvalidtime) < datetime(′2021− 01− 29′)
RETURN∗
6.b).(ii) MATCH{class : Station, as : s1}
.outE(Trip){as : t1, where : (startvalidtime.asDate().format(′yyyy −MM − dd′

≥ date(′2021− 01− 28′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′) AND
(endvalidtime.asDate().format(′yyyy −MM − dd′ >= date(′2021 − 01 − 29′,′ yyyy −
MM − dd′).format(′yyyy −MM − dd′)}.inV (Station){as : s2}
.outE(Trip){as : t2, where : (startvalidtime.asDate().format(′yyyy −MM − dd′

84

4. EXPERIMENTAL ASSESSMENTS 85

≥ date(′2021− 01− 28′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′) AND
(endvalidtime.asDate().format(′yyyy −MM − dd′

>= date(′2021 − 01 − 29′,′ yyyy − MM − dd′).format(′yyyy − MM −
dd′)}.inV (Station){as : s3}
RETURN∗

4.4.7 Analyses including Topology, Attribute and Time Dimensions

For the business analyses numbered 7 including topology, attribute and time dimensions,
we have the following translation process:

At the conceptual level:
7.a) TG1 = matchpredicates(TG, {{STUDENT1.(fever =
1) AND STUDENT2.(cough = 1)}AND PROXIMITY.(T d [2009 − 03 − 06, 2009 −
03− 07[)})
TG2 = matchpattern(TG1, (STUDENT1, PROXIMITY, STUDENT2)
7.b) TG1 = matchpredicates(TG, {STATION1.stationname =′ 1 Ave & E 30 St AND
TRIP1.bikeid = TRIP2.bikeid}) AND
TRIP1.T s [2021− 01− 28, 2021− 01− 29
TG2 = matchpattern(TG, (STATION1, TRIP1, STATION2, TRIP2, STATION3))

At the logical level:
7.a) PG1 = bgpm(PG, {STUDENT1, STUDENT2}, {PROXIMITY })
PG2 = filter(PG1, STUDENT1.fever = 1 AND
STUDENT2.cough = 1 AND PROXIMITY.startvalidtime ≥ 2009− 03− 06 AND
PROXIMITY.endvalidtime < 2009− 03− 07)
PG3 = project(PG2, PG2)
7.b) PG1 = bgpm(PG, ({STATION1, STATION2, STATION3},
{(STATION1, TRIP1, STATION2), (STATION2, TRIP2, STATION3)})
PG2 = filter(PG1, STATION.stationname =′ 1 Ave & E, 30 St′AND TRIP1.bikeid =
TRIP2.bikeid AND TRIP1.startvalidtime = 2021− 01− 28)
PG3 = project(PG2, PG2)

At the physical level:
7.a).(i) MATCH(s1 : Student)− [p : Proximity]− (s2 : Student)
WHEREs1.fever = 1 AND s2.cough = 0
ANDdatetime(p.startvalidtime) ≥ datetime(′2009− 03− 06′)
AND datetime(p.endvalidtime) < datetime(′2009− 03− 07′)
RETURN∗
7.a).(ii) MATCH{class : Student, as : s1, where : fever = 1}.outE(Proximity)
{as : p, where : (startvalidtime.asdatetime().format(′yyyy −MM − dd′)
≥ datetime(′2009− 03− 06′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′) AND
(endvalidtime.asdatetime().format(′yyyy −MM − dd′)
< datetime(′2009− 03− 07′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′)}
.inV (Student){as : s2, where : cough = 1}
RETURN∗
7.b).(i) MATCH(s1 : Station)− [t1 : Trip]− > (s2 : Station)

85

5. CONCLUSION 86

−[t2 : Trip]− > (s3 : Station)
WHERE s1.stationname =′ 1 Ave & E, 30 St′′AND
t1.bikeid = t2.bikeid AND date(datetime(t1.startvalidtime)) = date(′2021− 01− 28′)
RETURN∗
7.b).(ii) MATCH{class : Station, as : s1, where : (stationname =′ 1 Ave & E, 30 St′)}
.outE(Trip){as : t1, where : (startvalidtime.asDate().format(′yyyy − MM − dd′ =
date(′2021− 01− 28′,′ yyyy −MM − dd′).format(′yyyy −MM − dd′)}
.inV (Station){as : s2}
.outE(Trip){as : t2, where : (bikeid = $matched.(t1.bikeid)}.inV (Station){as : s3}
RETURN∗

4.4.8 Summary

We observe that the translation of business analyses expressed in conceptual operations
into queries expressed in Neo4j and OrientDB’s QL is direct for both datasets. This
is possible thanks to the mapping rules we propose at the logical level. No specific
developments are necessary. It is important to notice that we use specific functionalities
of Neo4j and OrientDB’s QL such as date functions.

5 Conclusion
The Temporal Graph model we proposed in the previous chapter provides a way to rep-
resent the multidimensional aspects of graph data with temporal evolution: topology,
attributes (of vertices and relationships) and time (evolution of topology and attributes).
Some research works propose querying solutions to manipulate the multiple dimensions
of temporal graph data in order to find information answering business questions of users.
However, these querying solutions present some limitations regarding their analysis and
practicality capabilities. On the one hand, some querying solutions cannot fully ma-
nipulate all dimensions of temporal graph data. They do not allow manipulating some
information of the attribute dimension (attributes of edges in RDF-based temporal graph
models) or time dimension (some Allen operators are not included). On the other hand,
they lack of a generic framework which is independent of implementation environments.
This limits their practicality aspects, i.e., user-orientation, composability, flexibility and
compatibility.

Therefore, we have proposed in this chapter a complete querying solution, composed of
three abstraction levels - conceptual (generic framework independent of implementation
environmnent), logical (implementation framework) and physical (selection of technical
environment) - to ensure that all analysis and practicality capabilities are fulfilled. At
the conceptual level, we proposed fundamental operators to query temporal graph data
that cover (i) basic operations on the topology and attribute dimensions and (ii) tempo-
ral dependent operations by crossing both topology and attribute dimensions with time
dimension. Contrary to existing querying solutions, our operators enable to fully manipu-
late all granularities of the different dimensions. Moreover, they rely on business-oriented
concepts from our Temporal Graph model instead of data-oriented concepts. This makes
it easier for users to express queries in a way that aligns with their domain of exper-
tise without worrying about implementation details. Then, our operators can be easily

86

5. CONCLUSION 87

combined to express complex queries by taking a temporal graph as input and output.
The previous features of our operators allow easy modification or addition of new query-
ing functionalities to address new users’ needs. In summary, the conceptual level of our
querying solution offers several advantages over existing work. It completes the analy-
sis capabilities for each dimension of temporal graph data and enhance the practicality
aspects by providing high user-orientation, composability and flexibility.

We have proposed both a logical and physical level, providing an implementation frame-
work for our conceptual operators. First, we have defined mapping rules to translate our
conceptual operators directly into operators for querying the property graph model. This
guarantees the compatibility of our conceptual operators to several technical environ-
ments supporting the property graph model. Then, we have discussed some implemen-
tation practices to translate the property graph operators directly into the textual query
languages of Neo4j and OrientDB graph database management systems.

We have carried out experiments with real-world datasets coming from different sources
and domains. We have proposed benchmark analyses covering different scenarios, starting
from the manipulation of a single dimension of temporal graph data to the manipulation
of the different dimensions (topology, attribute, time). From the results, we observe that
the business analyses expressed via our conceptual operators are directly implementable
(i.e., without specific developments) into the textual graph query languages of Neo4j and
OrientDB via the mapping rules defined at the logical level.

87

Chapter 4

Knowledge Discovery in Temporal
Graphs

Contents
1 Introduction . 89

1.1 Context . 89
1.2 Challenges . 89
1.3 Contributions and Outline . 90

2 Related Work . 90
2.1 Origins of Pattern Mining in Temporal Graphs 91
2.2 Pattern Mining in Temporal Graphs 95
2.3 Comparative Analysis of Pattern Mining Approaches in Temporal

Graphs . 100
3 Frequent Sequential Subgraph Evolutions (FSSE) and Problem Setting . . 103

3.1 Dynamic Attributed Graph . 104
3.2 A New Pattern . 106
3.3 Complementary Constraints . 109
3.4 Problem Setting . 111

4 Mining Frequent Sequential Subgraph Evolutions (FSSEMiner Algorithm) 111
4.1 Overview of the Algorithm . 111
4.2 Process of the Algorithm . 112
4.3 Time Complexity of the Algorithm 119

5 Experimental Assessments of FSSEMiner 122
5.1 Experimental conditions . 123
5.2 Quantitative Evaluation . 126
5.3 Qualitative Evaluation . 127

6 Conclusion . 133

88

1. INTRODUCTION 89

1 Introduction

1.1 Context
In the previous chapter, we have proposed exploring Temporal Graphs (TG) using queries.
Queries were means to extract descriptive information from TG, answering business ques-
tions related to ‘What’, ‘Who’, ‘Where’ and ‘When’ (Bellinger et al., 2004; Rowley, 2007).
However, queries are not sufficient to answer ‘How’ questions that delve into understand-
ing the mechanisms, processes or dynamics behind certain phenomena or events (e.g.,
disease spreading) that occur and evolve within TG contexts. This understanding re-
quires combining several pieces of information (e.g., different factors contributing to the
phenomena) while queries extract isolated pieces of information from TG.

In this chapter, we address the problem of ‘Knowledge Discovery’ in TG, i.e, discov-
ering hidden information in TG answering ‘How’ questions. More precisely, knowledge
refers to the combination of information pieces which is interpreted (give a meaning) and
evaluated (determine their value) to gain insights for understanding phenomena and mak-
ing informed actions based on this understanding (Bellinger et al., 2004; Rowley, 2007).
The complexity of discovering knowledge in TG lies in the need to combine information
pieces of TG stemming from the diverse types of evolution, including the evolution of
topology, attribute set, or attribute value (Chapter 2).

We choose the analytical approach of ‘Pattern Mining’ in TG to discover knowledge
in TG. Pattern Mining is a research field dealing with the challenges of handling various
types of evolution within TG to discover knowledge. Specifically, Pattern Mining in TG
refers to the process of extracting patterns using algorithms, with patterns representing
hidden evolution mechanisms (Fournier-Viger et al., 2020a). Knowledge Discovery in TG
can be illustrated in Fig 4.1 with Pattern Mining at its centre. In the following section,
we will discuss, in more detail, the challenges of Pattern Mining in TG.

Dynamic Attributed Graphs

Pre-processing Pattern Mining Post-processing

Selection
Cleaning

Transformation
Interpretation

Evaluation

Patterns

Knowledge

Figure 4.1: The process of Knowledge Discovery

1.2 Challenges
The primary challenge of Pattern Mining in TG is to design a pattern. This consists in
constructing the structure of the pattern, which is intricately linked to the characteris-
tics of an evolution mechanism being targeted. Consider the case of an epidemic in a
population. We know that the evolution mechanism behind an epidemic is related to the
sequence of changes in the health status of people (i.e, vertex attributes in the graph) and
in the interactions between people (i.e., edges in the graph). A pattern should therefore
integrate several aspects: information about evolution of attributes and topology and
sequential dependencies between events that lead to the phenomenon.

Today, patterns include at best the evolution of topology and evolution of vertex

89

2. RELATED WORK 90

attributes (Fournier-Viger et al., 2020a). However, they do not capture completely the
information from the evolution of topology and the evolution of vertex attributes. For
instance, they capture only the addition of edges over time in topology evolution or the
same trends over time in vertex attribute values evolution. This limits the explanatory
power of patterns for understanding evolution mechanisms (Desmier et al., 2013; Kaytoue
et al., 2014; Fournier-Viger et al., 2019, 2020b).

Moreover, current patterns are designed to capture local patterns. They focus on the
evolution within a specific group of connected vertices. While these patterns provide
insights about localized behaviours, they might not effectively capture broader trends
that span multiple groups (Desmier et al., 2013; Kaytoue et al., 2014; Cheng et al., 2017;
Fournier-Viger et al., 2019, 2020b). For example, in the study of an epidemic, existing
patterns may reveal how a virus propagates in a specific group of people. However, if this
specific group is special (for example, they have innate resistance to this virus, or they were
vaccinated), existing patterns lose general representativeness (i.e., capability of reflecting
several groups of connected vertices) and cannot provide meaningful analysis for virus
transmission. Indeed, understanding how phenomena propagate across different groups is
crucial for making informed decisions. In a nutshell, a complete and representative
pattern is needed to provide more useful information.

The second challenge of Pattern Mining in TG is to design an algorithm to mine a novel
pattern. Existing mining algorithms are indeed designed with specific patterns in mind
(Fournier-Viger et al., 2020a). They are not suitable for mining a novel pattern. However,
Pattern Mining in TG is generally quite computationally expensive (time and memory)
(Fournier-Viger et al., 2020a). Indeed, it requires exploring the different dimensions of
TG (topology, attributes, time) but also verifying some constraints (e.g., frequency of ap-
pearance of patterns) to find subgraphs matching the patterns. It is therefore essential
to design an algorithm incorporating strategies to reduce the computational
complexity.

1.3 Contributions and Outline
Facing the previous challenges, we will present the following contributions in the remainder
of the chapter: (i) a state of the art of existing patterns and mining algorithms to highlight
their limitations (in Section 2), (ii) the definition of a novel pattern and a new mining
problem (in Section 3), (iii) the design of an algorithm for our novel pattern with the
proposition of a strategy to reduce computational complexity (in Section 4) and, (iv)
experiments to extract our proposed pattern from real datasets using our algorithm (in
Section 5).

2 Related Work
The research field of Pattern Mining in TG results from the extensions of the Sequential
Pattern Mining field. The field of Sequential Pattern Mining addresses the extraction
of knowledge in sequence databases. The Sequential Pattern Mining field has been built
upon the field of Frequent Itemsets and Association Rules Mining. The Frequent Itemsets
and Association Rules Mining field considers the extraction of knowledge in databases. In
the following section, we therefore present the fields of Frequent Itemsets and Association

90

2. RELATED WORK 91

Frequent Itemsets & Association Rules Mining

Sequential Pattern Mining

a database frequent itemsets
association rules

mining algorithm

a sequence database sequence of itemsets
 time-ordered association rules

mining algorithm

Pattern Mining in Temporal Graph

a Temporal Graph
 sequence of vertex attribute value trends
 sequence of subgraph patterns
....

mining algorithm

Figure 4.2: Origins of Pattern Mining in Temporal Graphs

Rules Mining and Sequential Pattern Mining to understand the theoretical foundations
of Pattern Mining in TG (Section 2.1). Then, we review existing approaches in Pattern
Mining in TG (Section 2.2) and make a comparative analysis according to criteria derived
from the challenges presented in the previous section (Section 2.3).

2.1 Origins of Pattern Mining in Temporal Graphs

2.1.1 Frequent Itemsets and Association Rules Mining

Pattern Mining is a research field that emerged in the 1990s with the problem of market
basket analysis posed by Agrawal et al. (1993, 1994). This problem consists in analysing
a transaction database about customer transactions to discover frequent itemsets (Luna
et al., 2019) and association rules (Telikani et al., 2020) that help to understand the
behaviour of customers. As shown in Table 4.1, a transaction database is a relational
table containing a set of records (here, transactions of customers having identifiers TID
= 1, 2, ..., n) described using a set of binary attributes (here, purchased items). Fre-
quent itemsets are the groups of items appearing together (i.e., bought together) in the
database with a support (i.e., the number of transactions containing an itemset) above
a given threshold: the minimum support (Luna et al., 2019). For instance, in Table 4.1,

91

2. RELATED WORK 92

Table 4.1: Transaction database about customer transactions. The column TID refers to
the transaction identifier.

Binary Attributes
TID milk bread butter beer diapers eggs fruits
1 1 1 1 1 0 0 1
2 0 0 0 1 0 1 1
3 1 1 1 0 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0

{bread, butter} is a frequent itemset, for a minimal support of 2, as it appears in 3
transactions (transactions 1, 3 and 4). Association rules are strong associations between
items in the form of a rule X =⇒ Y (Telikani et al., 2020). It indicates that some
items X are strongly correlated with some other items Y according to constraints (e.g.,
support and confidence) to define their correlation. For instance, an association rule is
{bread, butter} =⇒ milk, meaning that every time customers buy butter and bread,
they also buy milk.

The Apriori algorithm was the first mining algorithm proposed to extract frequent
itemsets and association rules from transaction databases (Agrawal et al., 1993, 1994). It
takes as input a database similar to Table 4.1 and applies an iterative technique. First,
it scans the database to generate candidate itemsets of size 1 (i.e, an itemset composed
by each item in the database) and counts their support in the database. If their support
is below the minimum support, they are eliminated, as well as their subsets. Otherwise,
they are kept in memory to be iterated in the next generation step. Second, it generates
candidate itemsets of size k+1 by extending frequent itemsets of size k kept in the previous
iteration. It is the generation step. Then, it counts the support of candidate itemsets in
the database and prunes the infrequent one. It is the test step. This generation-and-test
process is repeated until no further successful extensions are found. The Apriori algorithm
uses Breadth-First Search (BFS) (Cormen et al., 2022) to generate all k−itemsets in each
k−th iteration while exploring the search space. However, the Apriori algorithm has three
main limitations. First, it requires multiple scans of the database to check the support
count of each itemset. So it costs a significant amount of computing power, especially
if the database is huge. Second, non-existent candidate itemsets could be generated
because candidates are generated just by combining smaller frequent itemsets without
accessing the database. Third, due to BFS, a large amount of memory is required to keep
all frequent itemsets of size k in memory to generate sequences of length k + 1. Over
the years, multiple algorithms have been proposed to improve the Apriori algorithm’s
efficiency (Luna et al., 2019).

Discussion Frequent itemsets and association rule mining approaches ignore the time
or sequential ordering of events (Gan et al., 2019). However, it is relevant to consider
the ordering of events or elements for providing insights about how an event may be
related to another event in a next timestamp. For example, in the market basket analysis,
considering the order of transactions allows analysing the evolution of customers’ shopping
behaviour. To address this issue, the concept of Sequential Pattern Mining has emerged.

92

2. RELATED WORK 93

Table 4.2: Sequence database about customer transactions. The column SID refers to
the sequence identifier.

SID Sequence
1 ⟨{milk, soup}, {fruits, cereal, bread}, {vegetables, yogurts}⟩
2 ⟨{diapers}, {cotton, baby shower gel, baby milk powder}, {milk}, {cereal, bread}⟩
3 ⟨{beer, chips}, {soda}, {pizza, ice cream}⟩
4 ⟨{diapers, milk}, {cereal, bread, baby milk powder}, {vegetable}⟩
5 ⟨{tea, fruits}, {honey, vegetables}, {soup, bread}⟩

2.1.2 Sequential Pattern Mining

Sequential Pattern Mining was first introduced by Agrawal and Srikant (1995) to find
subsequences that appear in a sequence database (Table 4.2) with a support (here, the
number of sequences containing a subsequence) above a given minimal support. Those
subsequences are called frequent sequential patterns. A sequence database SDB is a list of
sequences SDB = ⟨s1, s2, ..., sp⟩ having sequence identifiers (SIDs) 1, 2, ..., p. A sequence
is a time-ordered list of itemsets s = ⟨i1, i2, ..., in⟩ such that ik ⊆ I (1 ≤ k ≤ n) (Fournier-
Viger et al., 2017). For instance, in the sequence database illustrated in Table 4.2, the
sequence ⟨milk, {cereal, bread}⟩ (meaning that customers buy milk and the next time,
cereal and bread) is a frequent sequence, for a minimal support of 2, as it appears in 3
sequences (sequences 1, 2 and 4).

All Sequential Pattern Mining algorithms take as input a sequence database and a
minimum support threshold (chosen by the user), and as output the set of frequent se-
quential patterns. The difference between the various algorithms is not their output, but
their performance due to the chosen search strategies, data structures and optimizations
(Fournier-Viger et al., 2017). There are two main categories of Sequential Pattern Mining
approaches: Apriori and Pattern-Growth approaches. Most sequential Pattern Mining
algorithms extend these two main approaches.

Apriori approaches gather algorithms that use the generate-and-test strategy (where
candidate patterns are generated, tested and then combined) as in the Apriori algorithm
presented in the previous section. Some of the most popular Apriori-based algorithms are
Generalized Sequential Pattern (GSP) (Srikant and Agrawal, 1996) and SPADE (Zaki,
2001). The GSP algorithm scans the database to generate frequent sequences of 1 and
keep them in memory. Then it uses the sequences of size k to generate sequences of
size k + 1. This process is iterated until no sequences could be generated. However, the
GSP algorithm has the same limitations as the Apriori algorithm: (i) multiple database
scans to calculate the support of each candidate sequence, (ii) the possible generation
of non-existent candidate sequences, and (iii) due to the use of BFS, a large amount of
memory used to keep all frequent sequences of size k to generate sequences of length
k + 1 (Fournier-Viger et al., 2017). The SPADE algorithm is an alternative algorithm
to avoid the drawbacks of GSP. It can use Depth-First Search (DFS) (Cormen et al.,
2022) to consume less memory than BFS. Moreover, it uses a vertical representation of a
sequence database, as shown in Fig 4.3, to reduce significantly the number of scans of the
database. Each table of a vertical database represents the occurrences of an item (a, b, c,
d, e or f) in each sequence (SID) with their position in the sequence (EID). The SPADE
algorithm generates each sequence of size k + 1 by extending a sequence of size k using

93

2. RELATED WORK 94

a

SID EID

1 1,2

2 3

3 2

4 2

5

b

SID EID

1 2

2

3

4 3

5 1

c

SID EID

1 1,3

2 2

3 1,2,3

4 1,4

5 2

d

SID EID

1

2 1,3

3

4 2

5 1

e

SID EID

1 4

2

3 2,3

4 3,4

5

f

SID EID

1 3,4

2 3

3 3,4

4

5 2

Figure 4.3: A vertical representation of a sequence database. The column SID refers to
the sequence identifier. The column EID refers to the position of the item in the sequence
SID.

join operations between tables without scanning the database. Similarly, the support
of sequences is directly calculated without scanning database. However, SPADE is not
efficient to mine a sequence database containing long sequences. The join operations in
that case are very costly.

Pattern-Growth approaches can achieve a significant improvement over Apriori-based
algorithms. Candidate patterns that do not exist in the database are generated in Apriori-
based algorithms. They are generated by combining smaller patterns without accessing
the database. In response to this limitation, Pattern-Growth algorithms only consider
patterns appearing in the sequence database. To do so, they use the concepts of database
projections and DFS. The advantage of database projections is to avoid scanning the
whole database when finding the patterns. The most popular Pattern-Growth algorithm
is PrefixSpan (Jian Pei et al., 2004). As illustrated in Fig 4.4, first, it scans the sequence
database to generate all frequent sequences of size 1. Second, it projects the database on
the prefix (i.e, frequent patterns found earlier) to create a projected database containing
the prefix. Third, it extends the prefix with the items which are frequent in the projected
database to form longer sequential patterns. This process is then recursively repeated
as a DFS to find all frequent sequential patterns. Although Pattern-Growth algorithms
can achieve a significant improvement over Apriori-based algorithms, the cost of scanning
databases and performing projections can be quite high in terms of memory and time.

To optimize sequential mining algorithms’ performances, researchers have also pro-
posed to integrate constraints in the mining process. Constraints enable to reduce the
search space during the extraction of patterns. Constraints are additional criteria on the
patterns to be found. A classic constraint is the frequency or minimum support of pat-
terns we discussed earlier. The GSP algorithm (Srikant and Agrawal, 1996) introduces the
constraints of minimum and maximum amount of time windows between two consecutive
itemsets (gap constraints), and a maximum time duration for each sequential pattern (du-

94

2. RELATED WORK 95

Sequence database

SID Sequence

𝑆1 𝑎, 𝑏 , 𝑐 , 𝑎

𝑆2 𝑎, 𝑏 , 𝑏 , 𝑐

𝑆3 𝑏 , 𝑐 , 𝑑

𝑆4 𝑏 , 𝑎, 𝑏 , 𝑐

Projected database of
the prefix 𝒂

SID Sequence

𝑆1 _𝑏 , 𝑐 , 𝑎

𝑆2 _𝑏 , 𝑏 , 𝑐

𝑆3 𝑏 , 𝑐 , 𝑑

𝑆4 _𝑏 , 𝑐

𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 3
𝑏 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 4
𝑐 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 4
𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 1

𝑎 , 𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 1
𝑎 , 𝑏 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 1
𝑎 , 𝑐 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 3
𝑎, 𝑏 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 3

Projection

Projected database of
the prefix 𝒂 , 𝒄

SID Sequence

𝑆1 𝑎

𝑎 , 𝑐 , 𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 1

… …

Scan

Scan

Scan

minimum support = 3

Projection

Figure 4.4: Process of PrefixSpan algorithm

ration constraint). Pei et al. (2007) also propose various constraints in Pattern-Growth
algorithms, such as items that should appear or not in sequential patterns (item con-
straints) and minimum and maximum number of items per sequential patterns (length
constraints).

2.2 Pattern Mining in Temporal Graphs
In the 2000s, the research field of Sequential Pattern Mining has evolved to consider the
temporality of a new type of data: Temporal Graphs (TG). Indeed, TG open the oppor-
tunity of discovering novel patterns: evolution mechanisms capturing information from
the multiple dimensions of TG (topology, attributes, time). In the field of Pattern Mining
in TG, various types of TG are defined based on the information in patterns researchers
aim to capture. First, we have the ‘dynamic graphs’. They designate a sequence of time-
ordered graphs allowing to represent the evolution of a graph over a set of timestamps
{t1, t2, ..., tmax} (Fournier-Viger et al., 2020a). Vertices and edges of each graph of the
sequence represent respectively entities and relationships (or other interactions) between
entities that are valid at a timestamp. Extracted patterns from dynamic graphs cap-
ture essentially information from the topology evolution of TG. To enrich the extracted
patterns, ‘dynamic labelled graphs’ extend dynamic graphs by associating a label on each
vertex or edge to describe an attribute of an entity (or relationship) (Fournier-Viger et al.,
2020a). Extracted patterns from dynamic labelled graphs may thus capture information
from the evolution of topology and one attribute of vertices (or edges). Finally, the richest
representation of TG is ‘dynamic attributed graphs’. Dynamic attributed graphs represent
also an extension of dynamic graphs (Fig 4.5). Several attributes can be associated to
vertices instead of one label to provide more semantics to vertices. Patterns extracted in
those dynamic attributed graphs may therefore capture the evolution of topology and sev-
eral vertex attributes. It is important to notice that dynamic attributed graphs
represent the most complete type of TG in terms of evolution. They are there-

95

2. RELATED WORK 96

t2

2

4

: 2a1
: 3a2
: 1a3

t1

1

5

3

: 4a1
: 2a2
: 2a3

: 2a1
: 5a2
: 4a3

: 0a1
: 5a2

2

4

1

5

3

: 2a1
: 2a2
: 3a3

: 0a1
: 4a2

: 5a1
: 3a2
: 3a3

: 3a1
: 1a2
: 5a3

t3

2

4

1

5

3

: 5a1
: 1a2
: 6a3

: 4a1
: 3a2
: 7a3

: 1a1
: 2a2
: 5a3

: 0a1
: 4a2
: 6a3

t4

2

4

1

6

: 2a1
: 5a2

: 0a1
: 2a2
: 6a3

: 5a1
: 3a2
: 6a3

: 3a1
: 6a2
: 1a3

: 4a1
: 6a2
: 3a3

: 2a1
: 7a2
: 5a3

: 1a1
: 8a2
: 6a3 : 6a1

: 5a2
: 6a3

: 10a1
: 2a2
: 3a3

2

4

1

6

3

: 0a1
: 1a2
: 6a3

: 2a1
: 6a2

: 1a1
: 10a2
: 5a3

t5

5

: 1a1
: 2a2
: 4a3

Figure 4.5: A dynamic attributed graph having four timestamps with numerical attribute
values

t : toi1 t1 t2

2

4

1

5

3

−a1
=a2
+a3

=a1
−a2

+a1
=a2
+a3

+a1
−a2
+a3

t : toi2 t2 t3

2

4

1

5

3

=a1
−a2
+a3

+a1
+a2
+a3

+a1
=a2
+a3

=a1
=a2

t : toi3 t3 t4

2

4

1

−a1
=a2
+a3

+a1
=a2
+a3

+a1
=a2
+a3

−a1
+a2
+a3

−a1
+a2
+a3

t : toi4 t4 t5

+a1
+a2
=a3

2

4

1

6

=a1
−a2
=a3

=a1
+a2

−a1
+a2
−a3

5

+a1
−a2
−a3

Figure 4.6: A sequence of trend graphs

fore the closest to our TG model in Chapter 2. Consequently, in the following,
we will focus on Pattern Mining techniques within dynamic attributed graphs
as a foundational step towards adapting and expanding these techniques to
suit our TG model.

Mining patterns in dynamic attributed graphs consists of finding complex relationships
between topology evolution (i.e., addition/removal of edges over time) and vertex attribute
evolution (i.e., addition/removal and update of attributes over time) to highlight some
evolution mechanisms. To take into account attribute value evolution in patterns, a
common practice is to convert numerical attribute values into trends (increase, decrease
or equality) to show how they have changed over time. For instance, Fig 4.6 shows
the result of converting the dynamic attributed graph in Fig 4.5 into a sequence of trend
graphs. To the best of our knowledge, all studies on Pattern Mining in dynamic attributed
graphs use the sequence of trend graphs as input Fournier-Viger et al. (2020a). In the
following, we analyse the existing approaches of Pattern Mining in dynamic attributed
graphs.

2.2.1 Cohesive Co-evolution Patterns

The problem of mining cohesive co-evolution patterns in dynamic attributed graphs is
proposed by Desmier et al. (2012). A cohesive co-evolution pattern is a set of vertices that

96

2. RELATED WORK 97

2

4

a) a cohesive co-evolution pattern b) a trend dynamic attributed subgraph pattern

2

4

1

Figure 4.7: A cohesive co-evolution pattern (a), a trend dynamic attributed subgraph (b)

have similar neighbourhood and similar trend values (i.e., increase, decrease or equality)
for some attributes over a set of timestamps. It is a triplet (V, T, Ω) where V is a set
of vertices, T is a set of timestamps and Ω is a set of signed attributes (i.e., trends
attached to attributes). For instance, ({2, 4}, {ti1, ti2, ti3}, {a3+}) in Fig. 4.7 a) is a
cohesive co-evolution pattern extracted from the dynamic attributed graph of Fig 4.6.
This pattern indicates that the attribute value of a3 of vertices 2 and 4 have seen their
value increased over ti1, ti2 and ti3. In addition, several constraints have been proposed
by the authors to reduce space search. Specifically, the cohesiveness constraint imposes a
minimum similarity of the direct neighbourhood of pairs of vertices, based on similarity
measures such as Cosine similarity. Finally, they propose an algorithm to extract cohesive
co-evolution patterns. All patterns are enumerated in a DFS manner by recursively
appending vertices to patterns and checking that constraints are satisfied.

2.2.2 Trend Dynamic Attributed Subgraph Patterns

Desmier et al. (2013) extend cohesive co-evolution patterns in Desmier et al. (2012). They
propose the new pattern of trend dynamic attributed subgraph denoted as, (G(V, T), Ω)
where G(V, T) is a dynamic subgraph occurring at each timestamp of T and Ω is a
set of signed attributes. In other words, a trend dynamic attributed subgraph is a set of
connected vertices respecting some constraints on topology and trends of attribute values.
For instance, (G({2, 1, 4}, {ti1, ti2, ti3}), {a3+}) in Fig. 4.7 b) is a trend dynamic subgraph
extracted from the dynamic attributed graph of Fig 4.6. As topology is underused in
Desmier et al. (2012) (exploited through a similarity measure), the authors integrate
a new constraint on topology Desmier et al. (2013). The connectivity of the dynamic
subgraphs is constrained by a maximum diameter value that limits the length of the
path between two vertices of a dynamic attributed subgraph. The authors develop the
MINTAG algorithm based on a DFS exploration strategy to extract the pattern.

97

2. RELATED WORK 98

Figure 4.8: A triggering pattern ⟨{a+, b+}, {c−}, {deg+}⟩ supported by the vertices in
yellow (u1) and blue (u3). Source: Kaytoue et al. (2014)

2.2.3 Triggering Patterns

Kaytoue et al. (2014) define the triggering pattern which is a sequence P = ⟨L, R⟩ where
L is a sequence of attribute variations of a vertex followed by a single variation of a
topological property (degree, betweenness, number of clicks etc.) of the same vertex
denoted as R. In Fig 4.8 the triggering pattern ⟨{a+, b+}, {c−}, {deg+}⟩ indicates that
an increase in the attribute value of a and b followed by a decrease in the attribute value
of c in the next time, triggers an increase of the degree property (number of incident edges
to a vertex). This pattern is supported by two vertices, u1 and u3. The authors define two
constraints on such patterns: the support and the growth rate. The support constraint is
defined by the number of vertices that satisfies the pattern, while the growth rate gives
the discriminating power of the sequence variations to explain a topological change. They
design the algorithm TRIGAT to mine triggering patterns. First, TRIGAT generates all
1-item sequences by checking the previous constraints. Then, it extends patterns using a
Pattern-Growth approach (Section 2.1.2).

2.2.4 Significant Trend Sequences

Fournier-Viger et al. (2019) address a limitation of triggering patterns (Kaytoue et al.,
2014). Indeed, the calculation of the influence of the attribute variations on the topological
change in a triggering pattern is only based on the last attribute variation. Thus, this
approach may find patterns where attribute variations are weakly correlated with each
other over time. Therefore, they propose a new pattern named significant trend sequence.
They consider the very specific case where a vertex’s attributes influence its neighbours’
attributes. A significance measure, called Sequence Virtual Growth Rate, is proposed with
the pattern to measure the correlation between all consecutive attribute variations of a
sequence. For example, in Fig 4.9, ⟨{a1+, a2+}, {a3−}⟩ is a significant trend sequence.
{a3−} is strongly correlated with {a1+, a2+} because {a1+, a2+} is very often followed
by {a3−} but not because {a3−} is globally frequent. To mine significant trend sequences,
two algorithms, named TSeqMinerdfs−dfs and TSeqMinerdfs−bfs, are proposed. Both
algorithms are based on a Pattern-Growth approach.

2.2.5 Attribute Evolution Rules

Fournier-Viger et al. (2020b) propose a pattern named attribute evolution rule. An at-
tribute evolution rule (AER) is a tuple R : (V, E, λbefore, λafter) that indicates how the
attribute values (λ) of a connected subgraph (V, E) have evolved for two consecutive
timestamps. For example, ({x, y, z}, {(x, y), (y, z)}, {x : a+, z : b−}, {y : c+, d−}) in

98

2. RELATED WORK 99

Figure 4.9: A significant trend sequence ⟨{a1+, a2+}, {a3−}⟩. Source: Fournier-Viger
et al. (2019)

Figure 4.10: An attribute evolution rule ({x, y, z}, {(x, y), (y, z)}, {x : a+, z : b−}, {y :
c+, d−}). Source: Fournier-Viger et al. (2020b)

Fig 4.10 is an attribute evolution rule. It indicates that the attribute a of vertex x has
increased (a+) and the attribute b of vertex z has decreased (b−), which then caused
vertex y’s attribute c to increase and attribute d to decrease at the next timestamp. The
algorithm AER−miner is proposed to extract AERs from a dynamic attributed graph.
It is based on an Apriori-based approach. First, it generates core patterns (a consequent
vertex with an attribute). Then, core patterns are extended iteratively (adding an an-
tecedent vertex with an attribute) using the generate-and-test strategy and BFS. Then,
core patterns are merged to obtain the AERs.

2.2.6 Recurrent Patterns

Cheng et al. (2017) generalize the concept of pattern in a dynamic attributed graph by
proposing recurrent patterns. A recurrent pattern, denoted as P = (SP , TP), is a sequence
of subgraphs SP which represents recurring evolutions of connected vertices regarding
their attribute values over a set of timestamps TP . Each subgraph can be described using
different vertex attributes and trends. For instance, in Fig. 4.11, (⟨(1 : a3 + |2 : a2 =

99

2. RELATED WORK 100

2

4
1

2

4

1

5

Figure 4.11: A recurrent pattern

a3 + |4 : a1 + a3|5 : a1 =)(1 : a1− |2 : a2 = a3 + |4 : a1 + a3)⟩, {ti1, ti2}) is an example of a
recurrent sequence of subgraphs starting at times ti1 and ti2 extracted from the dynamic
attributed graph of Fig 4.6. In other words, the sequence appears at the sequence of times
ti1, ti2 and at ti2, ti3.

The authors consider several constraints such that a pattern is relevant. A pattern must
be connected vertices (connectivity), appear a minimum number of times (frequency),
have a minimum number of vertices (volume) and describe a common core of individuals
to follow evolution (temporal continuity). Then, they proposed the RPMiner algorithm.
It is based on an iterative and incremental approach. First, it iteratively constructs
size-1 patterns. To do so, it performs different combinations of timestamps, traverses
the dynamic attributed graph to find subgraphs satisfying frequency constraints and vol-
ume constraints and finally performs intersections of these subgraphs at these timestamp
combinations. Second, for each time combination, it tries to extend incrementally each
pattern generated from the previous iteration with the current size-1 patterns by checking
the temporal continuity constraint.

2.3 Comparative Analysis of Pattern Mining Approaches in
Temporal Graphs

Considering the challenges we presented in Section 1.2, we want to extract patterns in
dynamic attributed graphs that are (i) representative (i.e., capturing evolution across
several groups of vertices), (ii) sequential (i.e, describing a sequence of events to capture
temporal relationships between events), (iii) complete (i.e., fully capturing the information
from evolution) and (iv) using an efficient algorithm. Therefore, we compare Pattern
Mining approaches in dynamic attributed graphs according to the characteristics of the
pattern and the strategy used in the mining algorithm. More precisely, we define the
following comparison criteria of patterns:

100

2. RELATED WORK 101

• The subject described in the pattern evaluates if the described evolution mechanism
concerns a single vertex, a group of vertices or several groups of vertices;

• The time span of the pattern evaluates if the described evolution mechanism is
within a single time point describing an event or within a time interval (or a sequence
of time points) describing a sequence of events ordered over time;

• the evolution aspects included in the pattern evaluates if the described evolution
mechanism captures fully, partially or not at all the information from the evolution
of vertex attributes and topology;

Table 4.3 shows the comparison of these approaches according to the previous criteria.

2.3.1 Patterns

Cohesive co-evolution patterns Desmier et al. (2012) and Trend dynamic attributed sub-
graphs patterns (Desmier et al., 2013) describe the evolution mechanism of a group of
vertices within a single time point. Therefore, these patterns are neither representative
nor sequential. Besides, since they are not sequential, they consider vertices having the
same trend in their attribute values over time. Thus, they are limited in capturing the
evolution of vertex attributes, since vertices can follow different value trends over time.
Moreover, they integrate some constraints on topology but do not capture topology evo-
lution.

The mining problem of triggering patterns in Kaytoue et al. (2014) allows finding tem-
poral relationships between the changes in attribute values and the change of a topological
property of a single vertex. Triggering patterns are therefore sequential but not represen-
tative. They focus indeed on the evolution of a single vertex. Regarding the evolution
aspects, triggering patterns enable to follow the different trends of attribute values over
time. However, the evolution of topology is only represented through the change in the
topological properties of vertices (e.g., degree).

Fournier-Viger et al. (2019) propose the mining problem of significant trend sequences
to discover the influence of the changes in attribute values of a single vertex on its neigh-
bours in the next timestamp. In other words, significant trend sequences describe a
sequential evolution within a group of vertices. So they are not representative. Regarding
evolution aspects, they capture the changes in attributes but do not include any aspects
on the evolution of topology.

Fournier-Viger et al. (2020b) define the mining problem of attribute evolution rules to
discover the influence of attribute changes within a group of vertices over time. Attribute
evolution rules are sequential, but not representative. Regarding evolution aspects, they
capture the changes in attribute values but consider the same topology (i.e, same sets
of vertices and edges) over time. For instance, for an epidemic within a population,
significant trend sequences represent the evolution of the same group of persons without
any changes in the composition of the group in terms of persons or interactions. It is
impossible to know if new interactions between persons (i.e., edges) or new persons (i.e.,
vertices) contribute to the propagation of the epidemic. So they ignore the evolution of
topology.

Recurrent patterns proposed by Cheng et al. (2017) describe the sequential evolution

101

2. RELATED WORK 102

Table 4.3: Comparison of different pattern mining problems

Pattern
Type

M
ining

Strategy
Evolution

Subject
T

im
e

Span
Evolution

A
spects

A
single

vertex
A

group
ofvertices

Severalgroups
ofvertices

Single
tim

e
point

T
im

e
interval

(sequence)

Vertex
A

ttributes
Topology

C
ohesive

C
o-evolution

Patterns

D
esm

ier
et

al.(2012)

D
FS

Trend
D

ynam
ic

A
ttributed

Subgraph
Patterns

D
esm

ier
et

al.(2013)

D
FS

Triggering
Patterns

K
aytoue

et
al.(2014)

pattern-grow
th

R
ecurrent

Patterns

C
heng

et
al.(2017)

intersections
and

extensions

Significant
Trend

Sequences

Fournier-V
iger

et
al.(2019)

pattern-grow
th

A
ttribute

Evolution
Rules

Fournier-V
iger

et
al.(2020b)

A
priori-based

of the attribute values of a group of connected vertices or ‘subgraphs’. Contrary to the
previous work, they integrate the evolution of topology by allowing a different structure
of subgraphs of the sequence. More precisely, two consecutive subgraphs of a sequence

102

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 103

can have new vertices and edges as long as they have a common core (temporal continuity
constraint). However, even if they fully capture the evolution of attribute values and
topology, they focus on the evolution of a group of connected vertices. So they are not
representative. The reason is that recurrent patterns represent the attribute values and
topology evolution of a specific group of vertices that is temporally frequent. They do
not look at the spatial frequency of the evolution, i.e., if the evolution is spatially located
in other groups of vertices.

2.3.2 Mining Strategy

What all the previous work has in common is that mining algorithms require making
repetitive traversals of the search space to generate patterns. These repetitive traversals
increase the computational complexity (time and memory) of these algorithms signifi-
cantly as the search space grows (i.e, the pattern size or graph size grows). Therefore,
researchers propose different mining strategies and constraints, such as the support (or
frequency) of patterns, to reduce the need for traversing the search space. They mostly
apply strategies found in frequent itemset mining (Section 2.1): DFS (Desmier et al., 2012,
2013), Pattern-Growth approach (Kaytoue et al., 2014; Fournier-Viger et al., 2019) and
Apriori-based approach (Fournier-Viger et al., 2020b). These algorithms treat attribute
values of vertices as itemsets to generate the patterns. They only consider topology as
constraints or as attributes. The algorithm for extracting recurrent patterns (Cheng et al.,
2017) is more complex than previous ones. The algorithm fully exploits the evolution of
topology in addition to the evolution of attribute values. Thus, the algorithm explores
attribute values of vertices and traverse the topology to generate subgraphs instead of
itemsets.

2.3.3 Conclusion

After analysing existing approaches to mine patterns in dynamic attributed graphs, we
first observe in Table 4.3 that no pattern is representative, i.e, represents the evolution
of several groups of vertices. Second, most patterns are sequential to highlight the tem-
poral relationships between events. Third, except for recurrent patterns Cheng et al.
(2017), current patterns are incomplete in terms of the evolution aspects they capture.
It is therefore necessary to define a novel pattern which is representative,
sequential and complete.

The previously mentioned algorithms do not allow extracting this novel pattern, espe-
cially because they count the frequency of patterns only temporally. Mining such patterns
in a dynamic attributed graph is therefore potentially more complex than mining recur-
rent patterns. It is therefore necessary to propose a mining strategy that can
both guarantee the mining efficiency and the representativeness, completeness
and sequentiality of patterns.

3 Frequent Sequential Subgraph Evolutions (FSSE)
and Problem Setting

As mentioned in the previous sections, a new Pattern Mining problem needs to be defined
to meet the challenges we posed. In this section, we present our Pattern Mining problem.

103

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 104

We first give a definition of the dynamic attributed graph (Section 3.1). Second, we define a
novel pattern, called frequent sequential subgraph evolutions (FSSE) (Section 3.2). Third,
we define several constraints helping to reduce the space search (Section 3.3). Finally, we
formally define the problem setting (Section 3.4).

3.1 Dynamic Attributed Graph
The input dataset of our Pattern Mining problem is a dynamic attributed graph. In
this section, we give a precise definition of a dynamic attributed graph and also detail a
necessary pre-processing phase of the dynamic attributed graph.

Definition 22 (dynamic attributed graph). A dynamic attributed graph, denoted as G =
⟨Gt1 , Gt2 , ..., Gtmax⟩, is a sequence of graphs that represents the evolution of a graph over
a set of ordered and consecutive timestamps T = {t1, t2, ..., tmax}. It is composed of the
set of vertices denoted as V. The set of attributes A is used to describe all the vertices.
Each attribute a ∈ A is associated with a value domain. A value domain Da (numerical
or categorical) is associated to each vertex and attribute a ∈ A. So D = ∪a∈ADa . For each
time t ∈ T , Gt = (Vt, Et, λt) is an attributed undirected graph where: Vt ⊆ V is the set of
vertices, Et ⊆ Vt × Vt is the set of edges, and λt : Vt −→ 2AD is a function that associates
each vertex of Vt with a set of attribute values AD = ∪a∈A(a × Da). The value of the
attribute a at time t of vertex v is denoted as Gt(v, a).

Example 8. Fig. 4.12 presents an example of a dynamic attributed graph with V =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}, T = {t0, t1, t2, t3}, A =
{a1, a2} where a1 and a2 are numerical attributes with the domain Da1 = N and Da2 = N.
We have Gt1(4, a1) = 10.

: 1a1
: 10a2

: 4a1
: 1a2

: 6a1
: 1a2

16

: 4a1
: 9a2

: 5a1
: 11a2

: 6a1
: 7a2

: 5a1
: 3a2

: 7a1
: 6a2

: 8a1
: 10a2

1

2

: 10a1
: 6a2

t1

7

8

: 3a1
: 6a2

: 3a1
: 8a2

4

t3

10

: 6a1
: 7a2
13

: 7a1
: 3a2

: 12a1
: 8a2

: 5a1
: 15a2

1

2

a 21:
: 11a2

7

8

: 2a1
: 10a2

4

10 11

: 5a1
: 8a2

12

: 5a1
: 6a2

: 4a1
: 2a2

: 7a1
: 10a2

: 7a1
: 4a2

: 8a1
: 15a2

: 7a1
: 4a2

: 15a1
: 10a2

: 3a1
: 12a2

: 4a1
: 17a2

1

2

8

4

: 5a1
: 10a2
13

11 12

5

15

63

: 10a1
: 6a2
3

: 3a1
: 4a2

5

14

: 7a1
: 10a2

: 5a1
: 8a2
13

: 8a1
: 6a2

1514

t2

14

: 5a1
: 2a2

6

: 3a1
: 2a2
17

: 4a1
: 3a2
17

: 5a1
: 7a2

: 6a1
: 4a2

: 3a1
: 3a2

: 6a1
: 6a2

: 10a1
: 8a2

1

2

: 9a1
: 4a2

t0

7

8

: 7a1
: 5a2

: 4a1
: 7a2

4

10

: 10a1
: 5a2
13

: 2a1
: 8a2

15

3

14

: 2a1
: 5a2

5

: 7a1
: 7a2

6

: 4a1
: 10a2

: 4a1
: 8a2

12

: 5a1
: 6a2

17

: 7a1
: 2a2

16

11

: 10a1
: 5a2

21

: 6a1
: 2a2

: 3a1
: 7a2
18

: 1a1
: 8a2

2019

: 8a1
: 4a2

21

: 8a1
: 3a2

: 3a1
: 8a2
18

: 2a1
: 9a2

2019

a1 : 7
a2 : 2
21

a1 : 10
a2 : 5

: 3a1
a2 : 10

18

a1 : 3
a2 : 15
2019

Figure 4.12: Dynamic attributed graph

To study how attribute values of vertices change over time, the concept of trend is
defined. When attribute values of vertices are numerical, they are usually converted to
trend values, since their absolute variations are not interesting (Fournier-Viger et al.,
2020a).

Definition 23 (trend). A trend is an increase (+), decrease (−) or stability (=) of the
value of a vertex’s attribute between two consecutive timestamps ti and ti+1. A trend set

104

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 105

Algorithm 4: Pre-processing of the dynamic attributed graph
Input: G : a dynamic attributed graph
Output: G′ : a dynamic attributed graph with trends

1 Create a new dynamic attributed graph G′

2 foreach Gti ∈ G do
3 V ′

ti+1
←− ∅

4 E′
ti+1

←− ∅
5 foreach vj ∈ Gti ∈ G do
6 if ∃vj ∈ Gti+1 ∈ G then

/* Create a new vertex v′
j */

7 v′
j ←− ∅

8 foreach ak ∈ vj do
/* Get the trend of the attribute values of ak between ti and ti+1

*/
9 a′

k ←− ts(ak, [ti, ti+1])
/* Add the attribute with its trend in the new vertex v′j */

10 v′
j ←− v′

j ∪ {a
′
k}

11 V ′
ti+1

←− V ′
ti+1
∪ {v′

j}

12 E′
ti+1

←− Eti+1 (V ′
ti+1

)
13 G′

ti+1
←− (V ′

ti+1
, E′

ti+1
)

14 G′ ←− G′ ∪G′
ti+1

15 Return G′

of a vertex v is the set of trends of all of its attributes during a time interval [ti, ti+1]. It
is denoted as ts(v, [ti, ti+1]).

Example 9. Consider the vertex 1 during the time interval [t0, t1]. The trend set of the
vertex 1 is ts(1, [t0, t1]) = {a1−, a2+}. In other words, the value of a1 decreases from t0
to t1 while the value of a2 increases.

Pre-processing the dynamic attributed graph is necessary before the mining process,
in the case we have numerical attribute values. The pre-processing phase consists in
constructing a new graph G′ti+1

for each pair of graphs Gti
and Gti+1 ∈ G. To construct

each graph G′ti+1
, vertices and edges in the graph Gti+1 are kept, except for the vertices that

only appear in Gti
but not in Gti+1 (or the opposite). Indeed, it is not possible to derive

trend values from a vertex that appear only in one of the two consecutive timestamps.
Then, the values of numerical attributes of the dynamic attributed graph are transformed
into trends derived from the difference of each pair Gti

, Gti+1 . Finally, we end up with
|T | − 1 timestamps. The algorithm 4 describes this pre-processing phase.

Example 10. Fig. 4.13 depicts the dynamic attributed graph in Fig. 4.12 after pre-
processing. As the values of attributes a1 and a2 are numerical in the initial graph, they
were transformed to trend values such that Da = {+,−, =}. The pre-processed dynamic
attributed graph in Fig. 4.13 is composed of three graphs at t1, t2 and t3. They represent
respectively (i) vertices present both in t0 and t1, edges of t1 and trend values of vertex
attributes from t0 to t1 of the dynamic attributed graph in Fig. 4.12, (ii) vertices present
both in t1 and t2, edges of t2 and trend values of vertex attributes from t1 to t2 of the
dynamic attributed graph in Fig. 4.12, (iii) vertices present both in t2 and t3, edges of
t3 and trend values of vertex attributes from t2 to t3 of the dynamic attributed graph in
Fig. 4.12.

105

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 106

−a1
−a2

−a1
−a2

16

−a1
a2+

+a1
+a2

−a1
+a2

+a1
=a2

+a1
=a2

−a1
+a2

2

+a1
a2+

t1

7

8

−a1
+a2

−a1
+a2

4

t3

10

−a1
+a2
13

+a1
=a2

+a1
+a2

−a1
+a2 1

2

−a1
+a2

7

8

−a1
+a2

4

10 11

+a1
=a2

+a1
−a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
+a2

−a1
+a2 1

2

8

4

=a1
+a2
13

11 12

5

15

63

+a1
=a2
3

+a1
−a2
5

−a1
+a2

14

+a1
+a2

−a1
+a2
13

+a1
−a2

1514

t2

14

−a1
−a2
6

−a1
−a2
17

−a1
−a2
17

1

12

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

Figure 4.13: Dynamic attributed graph after pre-processing

3.2 A New Pattern
In this section, we propose the novel pattern to be extracted in dynamic attributed graphs:
frequent sequential subgraph evolutions (FSSE). The objective for the pattern is to be :
(i) representative (i.e. it accounts for the evolution of several groups of vertices), (ii)
sequential (i.e. it describes a sequence of events in order to account for the temporal
relationships between events) and (iii) complete (i.e. it accounts for all the information
derived from the evolution of the graph).

Definition 24 (occurrence). An occurrence of the set of attribute values λ =
(λ1, λ2, ..., λn) (trend or categorical values) in a timestamp t ∈ T is a group of connected
vertices (v1, v2, ..., vn) in Gt ∈ G having the set of attribute values λ such that each λi ∈ λ
is the attribute value of the i-th vertex in the set of connected vertices. It is denoted as :

Occurrence(λ) in t = {t : (v1, v2, ..., vn)}

The occurrences of the set of attribute values λ = (λ1, λ2, ..., λn) in a set of timestamps
T ′ ⊆ T refer to several groups of connected vertices over ∀Gt, t ∈ T ′ having the set of
attribute values λ. They are therefore denoted as :

Occurrence(λ) in T ′ = {tj : (v1, v2, ..., vn)|tj : (v′1, v′2, ..., v′n)...|tk : (v1”, v2”, ..., vn”)}

such that ∀t ∈ T ′, Occurrence(λ) in t ⊆ Gt ∈ G. Occurrences are separated by vertical
bars and prefixed by their timestamp.

Example 11. Consider the set of attribute values λ = (a1 − a2+, a1 − a2+, a1 + a2 =
). The occurrences of λ in t1 and t2 in the dynamic attributed graph in Fig. 4.13 are
Occurrence(λ) in T ′ = {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)}
where T ′ = {t1, t2}. More precisely, we have Occurrence(λ) in t1 = {t1 : (1, 2, 3)|t1 :
(7, 8, 10)|t1 : (13, 14, 15)} and Occurrence(λ) in t2 = {t2 : (1, 2, 3)|t2 : (7, 8, 10)}.

106

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 107

−a1
−a2

−a1
−a2

16

−a1
a2+

+a1
+a2

−a1
+a2

+a1
=a2

+a1
=a2

−a1
+a2

2

+a1
a2+

t1

7

8

−a1
+a2

−a1
+a2

4

t3

10

−a1
+a2
13

+a1
=a2

+a1
+a2

−a1
+a2 1

2

−a1
+a2

7

8

−a1
+a2

4

10 11

+a1
=a2

+a1
−a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
+a2

−a1
+a2 1

2

8

4

=a1
+a2
13

11 12

5

15

63

+a1
=a2
3

+a1
−a2
5

−a1
+a2

14

+a1
+a2

−a1
+a2
13

+a1
−a2

1514

t2

14

−a1
−a2
6

−a1
−a2
17

−a1
−a2
17

1

12

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

Figure 4.14: Frequent subgraph

Definition 25 (frequent subgraph). A subgraph of G is defined as a set of attribute values
λ and its occurrences Occurrence(λ) in T ′. It is denoted as ⟨λ, Occurrence(λ) in T ′⟩. A
subgraph is frequent in G if the set of attribute values λ appears more than once (i) in time,
i.e., it has occurrences at least in two different timestamps in T ′ and (ii) in space, i.e., it
has at least two occurrences (or two groups of connected vertices) for each timestamp in
T ′.

Example 12. Consider the subgraph ⟨(a1 − a2+, a1 − a2+, a1 + a2 =), {t1 : (1, 2, 3)|t1 :
(7, 8, 10)|t1 : (13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)}⟩ represented by the red connected ver-
tices in Fig. 4.14. The subgraph is frequent in time as it has occurrences at two different
timestamps, t1 and t2. Moreover, it is also frequent in space, as it includes more than one
group of connected vertices for the same timestamp. For instance, in t1, the subgraph has
three occurrences: (1, 2, 3), (7, 8, 10), (13, 14, 15). So the spatio-temporal frequency of this
subgraph is 5 because it has 5 occurrences.

Definition 26 (frequent sequential subgraph evolution). A frequent sequential subgraph
evolution (FSSE) in G is a sequence of time-ordered frequent subgraphs representing the
evolution mechanism of several groups of connected vertices. It is denoted as follows :

P = ⟨{λ1; ...; λn}, {T1 : Occurrence1(λ1); . . . ; Occurrence1(λn)| . . .

|Tk : Occurrencek(λ1); . . . ; Occurrencek(λn)}⟩

where :

• {λ1; ...; λn} represents a sequence of attribute values sets separated by semicolons;

• {T1 : Occurrence1(λ1); . . . ; Occurrence1(λn), | . . . |Tk : Occurrencek(λ1); . . .
; Occurrencek(λn)} represents the occurrences of the sequence {λ1; ...; λn} at the
different time intervals {T1, . . . , Tk}. Occurrences are separated by vertical bars;

107

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 108

−a1
−a2

−a1
−a2

16

−a1
a2+

+a1
+a2

−a1
+a2

+a1
=a2

+a1
=a2

−a1
+a2

2

+a1
a2+

t1

7

8

−a1
+a2

−a1
+a2

4

t3

10

−a1
+a2
13

+a1
=a2

+a1
+a2

−a1
+a2 1

2

−a1
+a2

7

8

−a1
+a2

4

10 11

+a1
=a2

+a1
−a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
+a2

−a1
+a2 1

2

8

4

=a1
+a2
13

11 12

5

15

63

+a1
=a2
3

+a1
−a2
5

−a1
+a2

14

+a1
+a2

−a1
+a2
13

+a1
−a2

1514

t2

14

−a1
−a2
6

−a1
−a2
17

−a1
−a2
17

1

12

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

Figure 4.15: A frequent sequential subgraph evolution

• Each Ti : Occurrencei(λ1); ..., Occurrencei(λn) represents the occurrence of the se-
quence {λ1; ...; λn} at the time interval Ti where, for Ti = {ti, ..., tj}, 1 ≤ i ≤ j ≤ |T |,
ti the starting time and tj represents the end time of the sequence of occurrences;

• Each occurrence of the sequence should have at least one common vertex to represent
the evolution mechanism of a common core of connected vertices.

Example 13. Consider the frequent subgraph ⟨(a1 − a2+, a1 − a2+, a1 + a2 =), {t1 :
(1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)}⟩ in red, in Fig. 4.14.
If we create a sequence, it should be followed by a frequent subgraph during the time
interval [t2, t3]. As shown in Fig. 4.15, the green subgraph ⟨{(a1 − a2+, a1 + a2+, a1 +
a2−, a1 − a2−)}, {t2 : (1, 4, 5, 6)|t2 : (8, 11, 12, 17)|t2 : (13, 14, 15, 16)|t3 : (1, 4, 5, 6)|t3 :
(8, 11, 12, 17)}⟩ is frequent during [t2, t3]. Moreover, each of its occurrences has at least
one common vertex with the red subgraph. The red occurrence (1, 2, 3) has the vertex 1 in
common with the green occurrence (1, 4, 5, 6). The red occurrence (7, 8, 10) has the vertex
8 in common with the green occurrence (8, 11, 12, 17). The red occurrence (13, 14, 15) has
the vertices 13, 14 and 15 in common with the green occurrence (13, 14, 15, 16). Therefore,
we can create the sequence of subgraphs ⟨{(a1−a2+, a1−a2+, a1+a2 =); (a1−a2+, a1+
a2+, a1+a2−, a1−a2−)}, {t1, t2 : (1, 2, 3); (1, 4, 5, 6)|t1, t2 : (7, 8, 10); (8, 11, 12, 17)|t1, t2 :
(13, 14, 15); (13, 14, 15, 16)|t2, t3 : (1, 2, 3); (1, 4, 5, 6)|t2, t3 : (7, 8, 10); (8, 11, 12, 17)}⟩ from
t1 to t3. It is a FSSE pattern of size 2, i.e., composed of two frequent subgraphs: (i) a
frequent subgraph in {t1, t2} (in red) and (ii) a frequent subgraph in {t2, t3} (in green).
The spatio-temporal frequency of this pattern is 5 since it has 5 occurrences.

A FSSE pattern meets the challenges posed in previous sections. First, it is a repre-
sentative evolution because it accounts for the evolution of several groups of vertices. In
Example 13, we observe that the FSSE pattern is over several groups of vertices, such as
the group (1, 2, 3) or (7, 8, 10). This is possible because a FSSE pattern counts the fre-

108

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 109

quency of occurrences in time and space instead of only in time. Second, a FSSE pattern
is a sequential evolution because it is a time-ordered sequence of subgraphs. Finally, it
is a complete evolution because it captures the evolution of attribute values of vertices
through the sequence of attribute values sets. In Example 13, we observe that the FSSE
pattern describes the changes in the attribute trends of groups of vertices. Moreover, it
captures the evolution of graph topology by simply imposing a constraint of connectivity
within the groups of vertices. This implies that between two timestamps, the configura-
tion of a group of vertices can change (addition and removal of vertices or edges) as long
as there is a connectivity between vertices in the new configuration. In Example 13, we
observe for instance that in the occurrence t1, t2 : (13, 14, 15); (13, 14, 15, 16) of the FSSE,
the configuration of the group of vertices (13, 14, 15) has changed from t1 to t2. A new
vertex 16 has been added to the initial group of vertices.

We compare the FSSE and the closest pattern: recurrent patterns (Cheng et al., 2017).
Recurrent patterns are sequential and complete, but not representative. The example
in Fig. 4.16 illustrates this difference. With a frequency of 2, two recurrent patterns
are extracted. The first recurrent pattern is the group of connected vertices in red,
(1 : a1 − a2+, 2 : a1 − a2+, 3 : a1 + a2 =), which is followed by the group of connected
vertices in green, (1 : a1 − a2+, 4 : a1 + a2+, 5 : a1 + a2−, 6 : a1 − a2−). The frequency of
this pattern is 2, as it appears twice over time: the first time from t1 to t2 and the second
time from t2 to t3. The second recurrent pattern is a group of connected vertices in red,
(7 : a1−a2+, 8 : a1−a2+, 10 : a1 +a2 =), which is followed by another group of connected
vertices in green, (8 : a1−a2+, 11 : a1 +a2+, 12 : a1 +a2−, 17 : a1−a2−), with a frequency
of 2. We notice another sequence of subgraphs composed by the orange group of connected
vertices (13 : a1 − a2+, 14 : a1 − a2+, 15 : a1 + a2 =) which is followed by the yellow
group of connected vertices (13 : a1 − a2+, 14 : a1 + a2+, 15 : a1 + a2−, 16 : a1−, a2−),
representing exactly the same attribute trend evolution as the two patterns extracted
above. However, it is not considered as a recurrent pattern since its temporal frequency
is 1. In comparison, one extracted frequent sequential subgraph evolution is the sequence
(a1−a2+, a1−a2+, a1+a2 =); (a1−a2+, a1+a2+, a1+a2−) for several groups of connected
vertices. It groups all the frequent and infrequent recurrent patterns to generate a much
more general pattern. The frequency of this FSSE pattern is considered in one more
dimension, the spatial one. So, its spatio-temporal frequency is 5.

3.3 Complementary Constraints
Let P = ⟨{λ1; ...; λn}, {T1 : Occurrence1(λ1); . . . ; Occurrence1(λn) | . . . |Tk :
Occurrencek(λ1); . . . ; Occurrencek(λn)}⟩ be a FSSE pattern. Several constraints are de-
fined to complete the extraction of this pattern in a dynamic attributed graph for two
purposes. The first objective is to let the users precise even more certain aspects of the
pattern via a set of constraints. Indeed, different users may have different requirements
or perspectives on what constitutes an interesting pattern. The second objective is to
reduce the search space and improve the efficiency of the mining algorithm.

Definition 27 (connectivity). Vertices of a graph represent entities, and edges represent
relationships between these entities. During pattern extraction, vertices must be connected
by edges to extract potentially correlated evolutions among a set of objects. In Fig. 4.15,
the pattern (a1−a2+, a1−a2+, a1 + a2 =); (a1−a2+, a1 + a2+, a1 + a2−, a1−a2−) occurs
on a sequence of groups of connected vertices, such as (1, 2, 3); (1, 4, 5, 6) from t1 to t2 and

109

3. FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSE) AND
PROBLEM SETTING 110

−a1
−a2

−a1
−a2

16

−a1
a2+

+a1
+a2

−a1
+a2

+a1
=a2

+a1
=a2

−a1
+a2

2

+a1
a2+

t1

7

8

−a1
+a2

−a1
+a2

4

t3

10

−a1
+a2
13

+a1
=a2

+a1
+a2

−a1
+a2 1

2

−a1
+a2

7

8

−a1
+a2

4

10 11

+a1
=a2

+a1
−a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
−a2

+a1
+a2

+a1
+a2

−a1
+a2 1

2

8

4

=a1
+a2
13

11 12

5

15

63

+a1
=a2
3

+a1
−a2
5

−a1
+a2

14

+a1
+a2

−a1
+a2
13

+a1
−a2

1514

t2

14

−a1
−a2
6

−a1
−a2
17

−a1
−a2
17

1

12

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

−a1
−a2

21

+a1
+a2

=a1
+a2
18

+a1
+a2

2019

(1 : − +, 2 : − +, 3 : + =)(1 : − +, 4 : + +, 5 : + −, 6 : − −)a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2
first extracted recurrent pattern with a temporal frequency of 2:

(7 : − +, 8 : − +, 10 : + =)(8 : − +, 11 : + +, 12 : + −, 17 : − −)a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2
second extracted recurrent pattern with a temporal frequency of 2:

an extracted frequent sequential subgraph evolution pattern with a spatio-temporal frequency of 5:

3Occurrences in , : (1, 2, 3); (1, 4, 5, 6) and (7, 8, 10); (8, 11, 12, 17) and (13, 14, 15); (13, 14, 15, 16)t1 t2
2Occurrences in , : (1, 2, 3); (1, 4, 5, 6) and (7, 8, 10), (8, 11, 12, 17)t2 t3

(− +, − +, + =); (− +, + +, + −, − −)a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2

Figure 4.16: FSSE VS reccurrent patterns

(7, 8, 10); (8, 11, 12, 17) from t2 to t3.

Definition 28 (volume). The volume refers to the number of vertices of a subgraph.
Let vol(P) = min∀i∈[1,n] |λi| be the volume of a pattern P . A pattern P is sufficiently
voluminous if and only if vol(P) ≥ minvol, where minvol is a minimum number of
vertices of a subgraph. The minvol constraint should be at least equal to 2 to be a subgraph.
The user can also define the maximum number of vertices of a subgraph, denoted as
maxvol, such as vol(P) ≤ maxvol. For example, the pattern (a1−a2+, a1−a2+, a1+a2 =
); (a1 − a2+, a1 + a2+, a1 + a2−, a1 − a2−) has a volume of 3.

Definition 29 (temporal continuity). An evolution may include different vertices at each
timestamp. However, it is difficult for end users to interpret the evolution of vertices
without a direct relation between them at each step. Hence, it is desirable to study evolution
around a common core of vertices. To do so, a constraint is defined to follow a minimum
number of common vertices over time, denoted as mincom. Let denote Occurrencej(P)
is a jth instance of pattern P and com(Occurrencej(P)) = | ∩∀i∈1,...,n Occurrencej(λi)| be
the common number of vertices occurring in the instance sequence j. P is a continuous
pattern iff ∀j ∈ {1, .., k} com(Occurrencej(P)) ≥ mincom. Consider P the pattern

110

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 111

(a1 − a2+, a1 − a2+, a1 + a2 =); (a1 − a2+, a1 + a2+, a1 + a2−, a1 − a2−) in Fig 4.15. All
instances of the pattern P have at least one common vertex. For instance, the subgraphs
of the occurrence (7, 8, 10); (8, 11, 12, 17), at t1 and t2, have one common vertex, which is
8.

Definition 30 (spatio-temporal frequency). The frequency constraint, denoted as
minsup, is a user-defined threshold to filter patterns which occur more than a mini-
mum number in time and in space. The frequency of P is the number of occurrences of
the pattern P , sup(P) = k. Consequently, P is a frequent evolution iff sup(P) ≥ minsup.
For example, in Fig. 4.15, the frequency of the sequence (a1 − a2+, a1 − a2+, a1 + a2 =
); (a1 − a2+, a1 + a2+, a1 + a2−, a1 − a2−) is 5, as the pattern appears 5 times.

3.4 Problem Setting
Given a dynamic attributed graph G, the problem is to extract the complete set of frequent
sequential subgraph evolutions in G, denoted as Sol, such that ∀P ∈ Sol, 1) P is frequent
(i.e., sup(P) ≥ minsup); 2) the occurrences of P are connected at each time; 3) P is
sufficiently voluminous (i.e., minvol ≤ vol(P) ≤ maxvol); 4) P is centered around a core
of vertices sufficiently large (i.e., com(P) ≥ mincom), where minvol, maxvol, minsup and
mincom are user-defined thresholds.

4 Mining Frequent Sequential Subgraph Evolutions
(FSSEMiner Algorithm)

In this section, we present a novel mining algorithm: FSSEMiner. FSSEMiner allows
for mining a novel pattern, FSSE. FSSEMiner is based on a novel mining strategy, the
graph addition, to reduce the need to traverse the entire search space. This strategy
allows constructing frequent subgraphs by a linear addition operation of the candidate
subgraphs. Moreover, FSSEMiner uses the constraints defined in the previous section
to reduce the search space. In the following sections, we first present the FSSEMiner
algorithm (Section 4.1). Then, we explain in detail the process of the algorithm, including
the graph addition (Section 4.2). Finally, we calculate the time complexity of the algorithm
(Section 4.3).

4.1 Overview of the Algorithm
The FSSEMiner algorithm is presented in Algorithm 5 and its process is illustrated in
Fig. 4.17. Line 1 corresponds to the extraction of subgraph candidates, satisfying the
volume constraints (minvol and maxvol). Line 3-6 generates size-1 patterns starting
at t1 and satisfying the frequency constraint (minsup). To do so, the algorithm first
constructs all time combinations including t1 (T k

1 , line 4). It generates size-1 patterns Pi

by performing additions of subgraphs occurring at these times (Union function, line 5).
After that, the other times are processed incrementally. Then, the algorithm constructs
all time combinations, including ti (T k

i , line 9) and extracts size-1 patterns Pi from the
additions of subgraphs (lines 10-11). Then, it extends each pattern P generated from
the previous iteration with these size-1 patterns to create a sequence of subgraphs (lines
12-13). If the pattern P ′, resulting from the extension of P with Pi, satisfies the temporal
continuity (mincom) and frequency constraints (minsup), it is added to the set of patterns

111

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 112

Algorithm 5: FSSEMiner : Mining frequent sequential subgraph evolutions
Input: G : a dynamic attributed graph , minsup, minvol, maxvol, mincom
Output: Sol: set of frequent sequential subgraph evolutions satisfying the constraints
/* Step 1: Get the occurrences of the subgraph candidates of G */

1 S ←− ExtractionSubgraphs(A,D, minvol, maxvol)/* see Algorithm 6 */
/* or S = {Si set of subgraphs of Gt, t ∈ T | ∀si ∈ Si, si =
⟨λi, Occurrence(λi) in t⟩, minvol ≤ |Occurrence(λi)| ≤ maxvol} */

2 Candi ←− ∅, ∀i ∈ {1, 2, ..., |T |}
/* Step 2: Generate size-1 patterns */

3 for k = 1 to |T | do
4 for each T k

1 ⊆ T such as t1 ∈ T k
1 do

/* time combination including t1 of size k */
5 Punion ←− Union(S, T k

1 , minsup) /* see Algorithm 9 */
/* or Punion = {Sunion set of frequent subgraphs in T k

1 , | ∀sunion ∈
Sunion, sunion = (λ, Occurrenceunion), Occurrenceunion =
∪∀t∈T k

1
Occurrence(λ) in t and |Occurrenceunion| ≥ minsup} */

6 Cand1 ←− Cand1 ∪ Punion

/* Step 3: Extension of patterns */
7 Soli = ∅, ∀i ∈ {1, 2, ..., |T |}
8 for i = 2 to |T | do
9 for each T k

i ⊆ T such as ti ∈ T k
i do

10 Punion ←− Union(S, T k
i , minsup)

/* or Punion = {Sunion set of frequent subgraphs in T k
i , | ∀sunion ∈

Sunion, sunion = ⟨λ, Occurrenceunion⟩, Occurrenceunion =
∪∀t∈T k

1
Occurrence(λ) in t and |Occurrenceunion| ≥ minsup} */

11 for each Pi ∈ Punion do
12 for each P such as P ∈ Candi−1 do
13 P ′ ←− ExtendW ith(P, Pi)
14 if com(P ′) ≥ mincom and |P ′| ≥ minsup then
15 Candi ←− Candi ∪ {P ′}

16 else
17 Soli−1 ←− Soli−1 ∪ {P}
18 Candi ←− Candi ∪ {Pi}

19 Sol = MergeUpdate(
⋃

∀i∈T Soli)
20 Return Sol

generated at time ti (lines 14-15). Otherwise, P is added to the set of solutions, and Pi

is saved for future extensions (lines 17-18). Finally, all solutions generated at each time
are put together, and associated times are updated (line 19).

4.2 Process of the Algorithm

4.2.1 Extraction of Subgraph Candidates

The first step of the FSSEMiner algorithm process is to extract all possible candidate
subgraphs in a dynamic attribute graph G. Algorithm 6 describes the generation of the
set of these candidate subgraphs.

First, the algorithm creates the set of all possible attribute value combinations, de-
noted as CandAD, using the function CombineAttributeV alue (line 1 and detailed in
Algorithm 7).

Second, it creates the set of all possible subgraphs, denoted as Candλ, which represents
subgraphs having a number of vertices included in [minvol, maxvol] and whose vertices

112

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 113

Dynamic Attributed
Graph

subgraph candidates

size-1 patterns in size-1 patterns in
...

size-1 patterns in size-1 patterns in

patterns of size-2

patterns of size-3

...

patterns of size
|T|-1

patterns of size-|T|

(1) Extraction of Subgraph
Candidates using minvol
and maxvol

(2) Generation of Size-1
patterns using minsup and
graph addition

(3) Extension of Patterns
using mincom and minsup

subgraph candidates subgraph candidates

...
subgraph candidates

Figure 4.17: Main process of the FSSE algorithm

113

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 114

Algorithm 6: ExtractionSubgraphs: Function to compute all combinations of
subgraphs

Input: an attribute set: A, a set of value domains: D, a minimum volume of subgraphs: minvol, a maximum
volume of subgraphs: maxvol

Output: a set of subgraphs: S

1 CandAD ←− ∪∀k∈[1,|A|]CombineAttributeV alue(A,D, k) /* see CombineAttributeV alue function */
2 Candλ ←− ∅ /* to record the candidate subgraphs */

/* create the candidate subgraphs with the attribute value sets in CandAD for
each volume between minvol and maxvol */

3 foreach vol ∈ [minvol, maxvol] do
4 Candλ,vol ←− ∅ /* to record the candidate subgraphs for the volume vol */

/* Create subgraphs with a single vertex */
5 foreach λi ∈ CandAD do
6 Candλ,vol ←− Candλ,vol ∪ {(λi)}

/* Extend subgraphs with another vertex */
7 m = minvol
8 while m ≤ vol do
9 NewCandλ,vol ←− ∅

10 foreach λi ∈ Candλ,vol do
11 foreach λj ∈ CandAD do
12 NewCandλ,vol ←− NewCandλ,vol ∪ {(λi, λj)}

13 Candλ,vol ←− NewCandλ,vol

14 m = m + 1

15 Candλ ←− Candλ ∪ Candλ,vol

/* get the occurrences of each attribute value set in the graph */
16 S ←− ∅ /* to record final subgraphs */
17 St ←− ∅, ∀t ∈ T /* to record final subgraphs */
18 foreach t ∈ T do
19 foreach λi ∈ Candλ do
20 St ←− St ∪ ⟨λi, Occurrence(λi) in t⟩ /* see details of the function Occurrence */

/* Each St ∈ S is ordered in the same way according to λ */

21 S ←− S ∪ St

22 Return S

contain the attribute value sets in CandAD (line 2-15).

Finally, for each generated subgraph λ ∈ Candλ, a Depth-First Search (DFS) strategy
is used to compute its occurrences Occurrence(λi) ∈ t in each Gt ∈ G (line 18-22).
The function Occurrence is detailed in Algorithm 8. The anti-monotonicity property
is respected to find anti-monotonic subgraphs Fiedler and Borgelt (2007). The result is
the set of subgraphs satisfying the volume and connectivity constraints and denoted as
S = {St set of subgraphs of Gt, t ∈ T | ∀si ∈ St, si = ⟨λi, Occurrence(λi) in t⟩, minvol ≤
|Occurrence(λi)| ≤ maxvol}.

Example 14. Let us consider the dynamic attributed graph in Fig 4.13. We have A =
{a1, a2} and Dai

= {+,−, =},∀ai ∈ A. At the first step of Algorithm 6, we obtain the set
of attribute values CandAD = {a1+, a1−, a2+, a2−, a1 +a2+, a1 +a2−, a1−a2+, a1−a2−}
using the CombineAttributeV alue function (Algorithm 7). Consider that minvol = 2
and maxvol = 3. Then, subgraphs with a volume of 2 (i.e., composed by two vertices)
and 3 (i.e., composed by three vertices) based on CandAD are created. We obtain, for
instance, a subgraph of volume 2 λ1 = (a1 − a2+, a1 − a2+) and a subgraph of volume 3
λ2 = (a1 − a2+, a1− a2+, a1 + a2 =). Finally, the algorithm searches for the occurrences
of each λi for each timestamp t ∈ T in the dynamic attributed graph. We obtain for

114

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 115

Algorithm 7: CombineAttributeV alue: Function to make attribute-value com-
bination of size k

Input: an attribute set: A = {a1, ...ai, ...a|A|}, a set of value domains: D = {Da1 , ...Dai , ...D|A|}, a size of
combinations k

Output: a set of attribute value combinations: CandAD
1 CandAD ←− ∅

/* Create size-1 combination of attribute value */
2 for i = 1 to |A| − k + 1 do
3 for j = 1 to |Dai | /* where Dai

∈ D */
4 do
5 CandAD ←− {ai · dj} /* where ai ∈ A and dj ∈ Dai

*/

/* Extend the combination if k ≥ 2 */
6 i = 2
7 while i ≤ k do

/* Extend the combination */
8 NewCandAD ←− ∅
9 foreach cand ∈ CandAD do

10 for j = 1 to |Dai | /* where Dai
∈ D */

11 do
12 NewCandAD ←− {cand · ai · dj}/* where ai ∈ A and dj ∈ Dai

*/

13 CandAD ←− NewCandAD
14 i = i + 1

15 Return CandAD

λ1 at t1, Occurrence(λ1) in t1 = {t1 : (1, 2)|t1 : (7, 8)|t1 : (13, 14)} and for λ2 at t1,
Occurrence(λ2) in t1 = {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)}.

4.2.2 Generation of Size-1 Patterns by Graph Addition

The construction of size-1 patterns is the fundamental building block for constructing the
final patterns. To generate patterns of size-1, the graph addition strategy is proposed.
It is a linear addition operation of candidate subgraphs to construct frequent subgraphs
(the minsup constraint is verified). More precisely, this consists in making the union
of the occurrences for the same pattern (i.e., same attribute values λ) at different times
(Fig 4.18). This strategy avoids graph traversal operations, which would be exponential
using existing strategies.

Algorithm 9 describes the graph addition process. Let be n timestamps ti, ..., tj ∈
T , where 1 ≤ n ≤ |T | and 1 ≤ i < j ≤ |T |. The addition of n sub-
graphs si = ⟨λi, Occurrence(λi) in ti⟩,..., sj = ⟨λj, Occurrence(λj) in tj⟩ is denoted as
sunion = ⟨λ, Occurrenceunion(λ)⟩ where λ = λi = ... = λj and Occurrenceunion(λ) =
Occurrence(λi) in ti ∪ ... ∪ Occurrence(λj) in tj (line 3). sunion is a subgraph composed
of the union of occurrences of the n initial subgraphs having the same pattern. If
|Occurrenceunion(λ)| ≥ minsup, the algorithm keeps sunion in the mining process (lines
5-6). For the special case where n = 1 and i = j, the result of the addition of a subgraph
is itself. This case is necessary because a size-1 pattern (one subgraph) could also be
spatially frequent in one timestamp.

Example 15. Let us suppose that minsup = 4. In Fig. 4.13, The subgraphs s1 = ⟨{(a1−
a2+, a1 − a2+, a1 + a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)} in t1 and s2 =
⟨{(a1 − a2+, a1 − a2+, a1 + a2 =)}, {t2 : (1, 2, 3)|t2 : (7, 8, 10)} in t2 have the same
pattern. By adding s1 and s2, the pattern sunion = ⟨{(a1 − a2+, a1 − a2+, a1 + a2 =

115

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 116

Algorithm 8: Occurrence: Function to get the set of occurrences of a subgraph
at a given timestamp

Input: a timestamp : t, vertices at timestamp t: Vt, edges at timestamp t: Et, a set of attribute values of a
subgraph: λ = (λ1, ..., λi, ..., λ|λ|)

Output: Set of sets of occurrences: OccF inal

/* Step 1 : Get the occurrences of the subgraph */
1 Occ←− ∅ /* to record candidate occurrences of the subgraph */
2 CandV ←− Vt /* to record candidate vertices of occurrences */
3 foreach v ∈ CandV do
4 i = 1

/* index to traverse the attribute-value sets of the subgraph */
5 if λi ⊆ λt(v) | λi ∈ λ then

/* check if the first attribute-value set of the subgraph is included in
the attribute-value set of the vertex v */

/* create a vector of occurrences (or connected vertices) */
6 newocc←− (v)
7 i = i + 1
8 for each neighbor of v such as N(v) ∈ CandV and (v, N(v)) ∈ Et do

/* check if the next attribute-value set of the subgraph is equal to
the attribute-value set of the neighbor of the vertex v */

9 if λi ⊆ λ(N(v)) | λi ∈ λ then
10 newocc←− (newocc, N(v))
11 if i < |λ| then
12 i = i + 1

13 else if i = |λ| then
14 Occ←− Occ ∪ {newocc}
15 Exit For

16 else
17 Exit For

18 CandV ←− CandV \ {v}
/* not traverse the vertex v anymore */

/* Step 2: Apply the anti-monotonicity property of subgraphs */
/* Step 2.1. : Compute the overlapping occurrences of the subgraph */

19 MapV ←− ∅
20 Overlap←− ∅
21 for i = 1 to |λ|] do
22 Overlapi ←− ∅

/* Overlapi is the set of occurrences overlapping on identical vertices at
the position i */

23 MapVi ←− ∅
/* MapVi is the set of vertices of all occurrences at the position i */

24 foreach occj ∈ Occ do
25 MapVi ←−MapVi ∪ {vi|vi ∈ occj}

/* vi is the vertex at the i position of the occurrence occj */
26 newoverlap←− ∅ /* to record a set of occurrences having the same vertex at

the position i. */
27 foreach occk ∈ Occ \ {occj} do
28 if vi ∈ occj = wi ∈ occk then

/* wi is the vertex at the i position in the occk vector */
29 newoverlap←− newoverlap ∪ {occj , occk}

30 Overlapi ←− Overlapi ∪ {newoverlap}
/* Overlapi is a set of occurrence sets. */

31 MapV ←−MapV ∪ {MapVi} /* MapV is a set of vertex sets. */
32 Overlap←− Overlap ∪ {Overlapi} /* Overlap is a set of sets of occurrence sets. */

116

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 117

/* Step 2.2: Compute the final set of occurrences of the subgraph */
35 sup←− min|MapVi| |MapVi ∈MapV /* sup is the frequency of the subgraph */
36 OccF inal←− ∅
37 if ∀MapVi ∈MapV, |MapVi| = sup then
38 if ∀Overlapi ∈ Overlap, Overlapi = ∅ then
39 OccF inal←− Occ

40 else
41 foreach i ∈ [1, |MapV |] do
42 if |MapVi| = sup then
43 NonOverlap←− Occ \ {∪j∈[1,|Overlapi|]OccSetj ∈ Overlapi ∈ Overlap}
44 OverlapComb←− ∅ /* to record the set of combinations of overlapping

occurrences */
45 foreach occ ∈ OccSet1 | OccSet1 ∈ Overlapi do

/* OccSet1 is the first set of occurrences in Overlapi */
/* Create the first element of each occurrence combination */

46 OverlapComb←− OverlapComb ∪ {{occ}}

/* Extend each set of combinations in OverlapComb */
47 j = 2
48 while j ≥ |Overlapi| do
49 NewOverlapComb←− ∅
50 foreach CombSet ∈ OverlapComb do
51 foreach occ ∈ OccSetj ∈ Overlapi do
52 NewCombSet←− CombSet ∪ {occ}
53 NewOverlapComb←− NewOverlapComb ∪ {NewCombSet}

54 OverlapComb←− NewOverlapComb
55 m = m + 1

56 foreach CombSet ∈ OverlapComb do
57 OccF inal←− OccF inal ∪ {CombSet ∪NonOverlap}

58 Return OccF inal

)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)} is obtained. It can
be observed that s1 and s2 are infrequent. However, sunion is frequent after the addition
of the subgraphs.

4.2.3 Extension of Patterns

Once size-1 patterns have been generated, the complete sequential pattern is generated by
extending each size-1 pattern of each successive set of times. To do this, size-1 patterns
are iteratively extended by checking the mincom and minsup constraints to connect other
consecutive patterns to build a sequence of frequent subgraphs. This extension can be
achieved by processing the times incrementally.

Figure 4.19 shows an incremental construction of a pattern beginning from {t1, t2}.
This figure displays the parallel extensions of a pattern which occurs at t1 and
t2. Let s, s′ and s∗ be frequent subgraphs extracted in graph additions. Addi-
tions between St1 and St2 result in a set of frequent subgraphs, such that s =
⟨λ, Occurrence(λ) in t1, t2⟩ ∈ St1 + St2 . Candidate extensions for these subgraphs
can only be at t2 and t3 respectively (since gaps are not allowed). Now con-
sider times t2, t3 and suppose that s′ = (λ′, Occurrence(λ)′ in t2, t3) is a frequent
subgraph of S2 + S3. If s and s′ have at least minsup occurrences verifying the
temporal continuity constraint (mincom), then we can extend s with s′ to obtain
P = ⟨{λ; λ′}, {t1, t2 : Occurrence(λ) in t1, t2; t2, t3 : Occurrence(λ′) in t2, t3}⟩. The pro-

117

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 118

Figure 4.18: Graph addition

Algorithm 9: Union: Compute the union of occurrences of subgraphs for a
timestamp combination set

Input: a set of subgraphs: S, a timestamp combination set of size k: T k
i = {ti, ..., tj}, minimum frequency of a

pattern: minsup
Output: a set of size-1 patterns: Sunion

1 Sunion ←− ∅
2 foreach m = 1 to |St| | ∀St ∈ S, t ∈ T k

i do
/* St is the set of subgraphs of Gt */
/* |St| is the same for all St ∈ S */

3 Ocurrenceunion ←− ∪∀t∈T k
i

Occurrence(λm) in t where Occurrence(λm) in t ∈ St ∈ S

4 sunion ←− ⟨λi, Occurrenceunion⟩
5 if |Occurrenceunion| ≥ minsup then
6 Sunion ←− Sunion ∪ sunion

7 Return Sunion

cess continues until no more extensions can be performed. At each iteration, subgraphs
can be used to extend patterns from the previous iteration, but they can also be starting
points for new patterns.

For a sequence of 3 subgraphs, the pattern will be constructed and extended seven
times for T = {t1, t2, t3}: from {t1}, from {t2}, from {t3}, from {t1, t2}, from {t2, t3},
from {t1, t3}, from {t1, t2, t3}. Although the study of the combination {t1, t2} does not
bring more information compared to {t1, t2, t3}, it allows discovering other patterns to be
extended. All these time combinations are therefore necessary.

Example 16. Consider the dynamic attributed graph in Fig. 4.15 and the constraints
minvol = 2, maxvol = 4 and minsup = 2. We generate size-1 patterns from the addition
of Gt1 and Gt2:

• ⟨(a1 − a2+, a1 − a2+, a1 + a2 =), {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)|t2 :

118

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 119

...

Figure 4.19: Additions and extensions of patterns from {t1, t2}

(1, 2, 3)|t2 : (7, 8, 10)}⟩ (in red)

We generate size-1 patterns from the addition of Gt2 and Gt3:

• ⟨{(a1 − a2+, a1 + a2+, a1 + a2−, a1 − a2−)}, {t2 : (1, 4, 5, 6)|t2 : (8, 11, 12, 17)|t2 :
(13, 14, 15, 16)|t3 : (1, 4, 5, 6)|t3 : (8, 11, 12, 17)}⟩ (in green)

• ⟨{(a1 = a2+, a1+a2+, a1+a2+, a1−a2−)}, {t2 : (18, 19, 20, 21)|t3 : (18, 19, 20, 21)}⟩
(in grey)

We extend the size-1 patterns from the addition of Gt1 and Gt2 by verifying the tem-
poral continuity constraint. Given a threshold mincom = 1, the pattern ⟨(a1 − a2+, a1 −
a2+, a1 + a2 =), {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)}⟩ is
extended with the pattern ⟨{(a1−a2+, a1 + a2+, a1 + a2−, a1−a2−)}, {t2 : (1, 4, 5, 6)|t2 :
(8, 11, 12, 17)|t2 : (13, 14, 15, 16)|t3 : (1, 4, 5, 6)|t3 : (8, 11, 12, 17)}⟩ as each of its occurrence
has at least one common vertex with the candidate extension. Conversely, the pattern
⟨(a1 − a2+, a1 − a2+, a1 + a2 =), {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)|t2 : (1, 2, 3)|t2 :
(7, 8, 10)}⟩ is not extended by the pattern ⟨{(a1 = a2+, a1+a2+, a1+a2+, a1−a2−)}, {t2 :
(18, 19, 20, 21)|t3 : (18, 19, 20, 21)}⟩ since it shares no common vertices in its occurrences
with the candidate extension.

The Fig 4.20 shows the extracted solution beginning from {t1, t2} and satisfying user
defined constraints minvol = 2, maxvol = 4, minsup = 4 and mincom = 1. It illustrates
a sequence of two subgraphs having respectively three and four vertices and at least one
common vertex (for instance, the red vertex). Vertices are denoted as vi as they are
not dependent of occurrences. Edges are dotted to represent all connectivity possibilities
between vertices.

4.3 Time Complexity of the Algorithm
In this section, we evaluate the time complexity of the FSSEMiner, i.e., the amount of
time taken by an algorithm to run. To do so, we measure the time taken to execute
each operation of the algorithm. This gives information about the variation in execution
time of the algorithm when the number of operations varies in the algorithm. In partic-
ular, we highlight the graph addition strategy that allows to reduce the algorithm’s time
complexity.

119

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 120

−a1
a2+

+a1
=a2

−a1
+a2

v2

t

+a1
+a2

−a1
+a2

v′1

v′2

v1

+a1
−a2
v′3

t + 1

−a1
−a2

v′4v3

Figure 4.20: A FSSE solution beginning from {t1, t2}

4.3.1 Complexity of Subgraph Candidates Extraction

In the first step of the algorithm, the set of all possible attribute-value combinations of
vertices, denoted CandAD, is generated. The time complexity of constructing CandAD
depends on the number of attributes and values. It is denoted as follows:

ComCandAD =
|A|∑
k=1

(
|A|
k

)
|Dmax|k

= (|Dmax|+ 1)|A|.

where Dmax = max ∪a∈A |Da| is the domain of an attribute with the maximum number
of values.

Subgraphs candidates are then constructed based on the combinations of the elements
of CandAD and the chosen minimum and maximum volume of subgraphs. In the worst
case, a subgraph candidate has a volume equal to the maximum number of vertices in G,
denoted |Vmax| = ∪t∈T Vt. So, the complexity of constructing all subgraph candidates is:

Comsubgraphs generation = ComCandAD +
vol=|Vmax|∑

vol=1
|CandAD|vol

= (|Dmax|+ 1)|A| + |CandAD||Vmax|+1 − 1
|CandAD| − 1 − 1

Subgraph candidates are then extracted by traversing each graph Gt of the dynamic
attributed graph G. In the worst case, all vertices and edges of G are traversed. So the
time complexity of traversing G is:

Comgraph traversal = |T | × (|Vmax|+ |Emax|)

where |T | is the number of graphs to be traversed, Vmax = ∪t∈T Vt and Emax = ∪t∈T Et.

120

4. MINING FREQUENT SEQUENTIAL SUBGRAPH EVOLUTIONS (FSSEMINER
ALGORITHM) 121

To conclude, the time complexity of extracting subgraph candidates in G is:

Comsubgraph extraction = Comsubgraphs generation + Comgraph traversal

= (|Dmax|+ 1)|A| + |CandAD||Vmax|+1 − 1
|CandAD| − 1 − 1

+ |T | × (|Vmax|+ |Emax|)

4.3.2 Complexity of Graph Addition

In the second step, the graph addition is performed to generate size-1 patterns using the
subgraphs generated from the previous step. Consider the complexity of the addition of
k graphs. It requires performing additions of two graphs (k − 1) times. Graph addition
is applied to all sets of timestamp combinations, denoted as T k

i , 1 ≤ k ≤ |T |. So for
every timestamp combination T k

i ⊆ T , (k− 1) additions have to be performed. The total
number of timestamp combinations is equal to ∑|T |k=1

(
|T |
k

)
. So the time complexity of the

generation of size-1 patterns by graph addition is equal to:

Comaddition =
|T |∑

k=1

(
|T |
k

)
(k − 1)

=
|T |∑

k=1
k ×

(
|T |
k

)
−
|T |∑

k=1

(
|T |
k

)
= (|T | × 2|T |−1)− (2|T | − 1)
= 2|T |−1 × (|T | − 2) + 1

As we can see in Fig. 4.21 b), without graph addition, we would perform a huge amount
of subgraph traversals for the generation of patterns of size-1. In the worst case, the
number of subgraphs extracted in a timestamp is |Vmax| ∪t∈T Vt. So, the time complexity
of the generation of size-1 patterns without the addition strategy is:

Comnoaddition =
|T |∑

k=1

(
|T |
k

)
× |Vmax|k

= (|Vmax|+ 1)|T |

The complexity of size-1 patterns generation with addition only depends on the number
of timestamps |T | while without addition, it depends on both the timestamps and the
number of vertices. In a nusthell, Comnoaddition > Comaddition.

4.3.3 Complexity of Extension

In the third step, size-1 patterns are extended for every timestamp combination T k
i ⊆ T .

As mentioned above, in the worst case, the maximal number of subgraphs extracted in a
timestamp is |Vmax|. Consequently, for every timestamp combination T k

i ⊆ T , the maxi-
mal number of patterns that can be generated by the successive extensions is |Vmax||T |−1.

121

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 122

S t1 S t2 S t3

s1 s1 s1

s2 s2 s2

sn sn sn

∪ ∪

∪ ∪

∪∪

Size − 1 patterns creationwith additions for T 3
1 Size − 1 patterns creationwithout additions for T 3

1

for each ins i S t1

for each ins j S t2

for each insm S t3

if = = , create size − 1 patterns i s j sm

a) b)

Figure 4.21: Addition for the timestamp combination T 3
1

As the total number of timestamp combinations is ∑|T |k=1

(
|T |
k

)
, the time complexity of

generating all extensions is thus equal to:

Comextension =
|T |∑

k=1

(
|T |
k

)
× |Vmax||T |−1

= (2|T | − 1)× |Vmax||T |−1

4.3.4 Total Complexity

Based on the time complexity of subgraphs extraction, addition and extension, the com-
plexity of FSSEMiner algorithm is :

ComF SSEMiner = Comsubgraph extraction + Comaddition + Comextension

= (|Dmax|+ 1)|A| + |CandAD||Vmax|+1 − 1
|CandAD| − 1 − 1 + |T | × (|Vmax|+ |Emax|)

+ 2|T |−1 × (|T | − 2) + 1
+ (2|T | − 1)× |Vmax||T |−1

5 Experimental Assessments of FSSEMiner
This section reports the experiments we carry out to validate the performance of the
proposed FSSEMiner algorithm. The objectives of the experiments are: (i) to evaluate
the scalability of the algorithm with regard to different graph characteristics, and (ii) to
analyse patterns found by the proposed algorithm to assess whether they are useful in
different application domains. So, first, we present in this section the conditions of the
experiments (Section 5.1). Second, we present the quantitative evaluation of the algorithm
to meet the objective (i) (Section 5.2). Finally, we present the qualitative evaluation of
the algorithm to meet the objective (ii)(Section 5.3). The process of our experiments is
illustrated in Fig. 4.22.

122

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 123

Dynamic Attributed Graphs with Trends

FSSEMiner
Algorithm

Pattern Mining

32 Synthetic Datasets

US Flights Dataset

China Covid Dataset

Inputs

US Flights Dataset

China Covid Dataset

Pre-processing

Analysis of the performance
of the algorithm

By graph characteristics

Analysis of patterns
By application domain

Post-processing

Graph Characteristics

User-defined
Constraints

Figure 4.22: Experimental process overview

5.1 Experimental conditions

5.1.1 Technical Environment

The algorithm was implemented in C ++. The pre-processing of datasets were done in the
programming language Python 3.8. Experiments were conducted on 16 CPUs x Intel(R)
Xeon(R) Silver 4216 CPU @ 2.10GHz. A virtual machine is installed on this hardware
with 64 GB in terms of RAM and 250GB in terms of disk size. The technical details of our
experiments are available on the website https://gitlab.com/2573869/patternmining.

5.1.2 Synthetic Datasets

For the quantitative evaluation, 32 synthetic dynamic attributed graphs were generated
according to different graph characteristics: the size of the sequence (i.e., the number
of timestamps in the dynamic attributed graph), the number of vertices and edges per
timestamp and the number of vertex attributes. Algorithm 10 gives the details of the
generation of a synthetic dataset. First, we create the graphs of the dynamic attributed
graph according to a given size of the sequence |T | (lines 1-3). For each graph, we
create a given number of vertices |V | (lines 4-6). Then, we associate each vertex with a
given number of attributes |A|, for which values follow a uniform distribution (line 7-8).
Moreover, for each graph, we also create a given number of pairs of vertices (or edges)
|E| based on a uniform distribution (lines 9-11).

5.1.3 Real-world Datasets

To run our qualitative evaluation, 2 real-world datasets are used (Table 4.4): (i) a dataset
about US Domestic Flights derived from the RITA1 database and (ii) two datasets about
the COVID-19 cases and travel flows in China derived from the Harvard Dataverse
database. The first objective is to assess whether the algorithm discovers interesting pat-
terns to study the consequences of two disruptive events in the real-world: respectively
the impact of the Katrina hurricane in 2005 on US Domestic Flights and the impact of
the COVID on travel flows in China in 2020 and 2022. The second objective is to assess
the advantage of our new pattern compared to existing ones on real-world applications.
For this purpose, the Domestic US Flights dataset is as it is used in other research works,
contrary to the China Covid Dataset.

1Research and Innovative Technology Administration

123

https://gitlab.com/2573869/patternmining

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 124

Algorithm 10: GenerateSyntheticDataset: Function to generate a synthetic
dataset

Input: the number of vertices per graph: |V |, the number of edges per graph: |E|, the number of attributes per
vertex: |A|, a set of value domains : D = {D1, ...Dk, ...D|A|}, the number of timestamps: |T |

Output: A dynamic attributed graph: G
1 for i = 1 to |T | do
2 Vti ←− ∅, Eti ←− ∅
3 Create Gti = (Vti , Eti , λti)
4 for j = 1 to |V | do
5 Create vj

6 Vti ←− Vti ∪ {vj}
7 for k = 1 to |A| do
8 Create ak = UniformDistribution(min(Dk), max(Dk)) where ak ∈ λti (vj)

9 for l = 1 to |E| do
10 el = (vm, v′

m) where vm, v′
m ∈ Vti , m = UniformDistribution(1, |V |) and

m′ = UniformDistribution(1, |V |)
11 Eti ←− Eti ∪ {el}

12 Return G

US Flights Dataset. The RITA dataset2 contains US domestic flights by major air
carriers. From this dataset, we construct a dynamic attributed graph. The latter aggre-
gates US domestic flights data over each week during the Katrina hurricane period from
01/08/2005 to 25/09/2005. In other words, the gap between each timestamp t and t + 1
is a week and there are 8 timestamps in the dynamic attributed graph. Graph vertices
represent US airports and are connected by an edge if there is at least a flight connect-
ing them during the time period. There are 280 vertices and, 1206 edges per timestamp
in average. We consider 4 vertex attributes for which the values change over time: (i)
the number of departure delays, (ii) the number of arrival delays, (iii)the number of can-
celled flights and (iv) the number of diverted flights (whose destination airport has been
diverted).

China Covid Dataset. The Harvard Dataverse database proposes a dataset about
the COVID-19 daily cases in Chinese cities3 since 2020 and a dataset about travel flows
based on Baidu Mobility Index4 between Chinese cities. From these two datasets, we
generate two dynamic attributed graphs over two periods of time during which peaks in
the number of daily COVID cases were observed: (i) from 15/02/2020 to 04/03/2020
and (ii) from 17/04/2022 to 05/05/2022. For both dynamic attributed graphs, data are
aggregated every 3 days. In other words, the gap between each timestamp t and t + 1 is
3 days and there are 6 timestamps in each dynamic attributed graph. Vertices represent
Chinese cities and are connected with an edge if the mobility index between cities is not
null (i.e., if there are travel flows between cities). We consider 4 vertex attributes: (i) the
city size with a value equal to « small », « medium », « big » or « mega » city according
to the population5, the total number of new COVID cases, (iii) the total number of new
deaths and (iv) the total number of new recoveries since the beginning of the two periods.
The value of the size of the city is fixed (i.e., does not change over time) while the value
of the three other attributes changes over time. There are 232 vertices and, 13260 edges

2https://www.transtats.bts.gov/
3https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO&

version=21.1, https://qianxi.baidu.com/
5small city : less than 500.000 residents, medium city: between 500.000 and 1 million residents, big

city: between 1 million and 5 million residents, mega city: more than 5 million residents

124

https://www.transtats.bts.gov/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO&version=21.1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO&version=21.1
https://qianxi.baidu.com/

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 125

Table 4.4: Real datasets description

Dynamic
Attributed

Graph

Number of Vertices
in average

per timestamp

Number of Edges
in average

per timestamp

Number
of Attributes

Number of
Timestamps

US Flights Dataset 280 1206 4 8
China Covid Dataset 232 13260 4 6

per timestamp in average.

Transformation into trends. As discussed in the Section 3.1, it is desirable to trans-
form dynamic attributed graphs into trend graphs in the case we have numerical attribute
values. To construct the trend graphs, we apply the transformation rules in the Sec-
tion 3.1. More precisely, two different discretization strategies of attribute values were
used for each dataset.

For the US Flights dataset, the value of all attributes (the number of departure delays,
the number of arrival delays, the number of cancelled flights and the number of diverted
flights) change over time. A simple discretization is applied to the value of all attributes
to transform them into trends. The trend of each attribute a of vertex v at a timestamp
t is computed according to the following rule:

trend(v, a, t) =


+, if value(v, a, t) < value(v, a, t + 1)
=, if value(v, a, t) = value(v, a, t + 1,)
−, if value(v, a, t) > value(v, a, t + 1)
∅, otherwise

For the China Covid dataset, the values of the attribute city size are not transformed
into trends, as they are fixed over time. Conversely, the values of the attributes the total
number of new COVID cases, the total number of new deaths and the total number of
new recoveries change over time. More precisely, they increase over time as they display
the accumulated number of new COVID cases, deaths and recoveries since the beginning
of the period. Therefore, to transform them into trends, a discretization in terms of the
proportion of the increase is applied as follows:

trend(v, a, t) =


=, if no new cases between t and t + 1
+, if value(v, a, t + 1)− value(v, a, t) ∈]0, 5]
++, if value(v, a, t + 1)− value(v, a, t) ∈]5, 15]
+ + +, if value(v, a, t + 1)− value(v, a, t) ∈]15,]

5.1.4 Choice of constraints

As presented in Section 4.15, the choice of the value of constraints
minvol, maxvol, mincom and minsup meets two objectives: (i) users’ needs and
objectives (What are the questions they are trying to answer ?) and (ii) the need to
reduce the search space according to the dataset characteristics. Generally, the value
of constraints are adjusted iteratively to meet the two objectives. In other terms, the

125

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 126

mining algorithm is run iteratively according to different values of constraints to find the
ones that meet the two objectives.

In the case (i) users want to capture the changes in the structure of entity groups over
time, the value of the mincom constraint needs to be significantly lower than maxvol
(by default it is set to 1) to extract patterns including the addition and removal of new
entities in groups over time. Otherwise, they will set a value mincom close to maxvol.

5.2 Quantitative Evaluation
We conduct a quantitative evaluation of the performance of the FSSEMiner algorithm
based on the synthetic datasets. Since a new pattern has been proposed, as far as we
know, there exist no algorithms that can be compared with the proposed algorithm. So
the performance of the algorithm is evaluated by comparing its runtime and scalability on
different graph characteristics: the number of timestamps (Section 5.2.1), the number of
attributes (Section 5.2.2) and the number of vertices and edges (Section 5.2.3). The user-
defined constraints are set as follows: minvol = maxvol = 2, mincom = 1, minsup = 60%
of the average number of vertices per graph in the dynamic attributed graph. Indeed, we
set the value of minsup according to the number of vertices per graph since we observe
that the number of occurrences of patterns depends on the number of vertices.

5.2.1 Impact of the number of timestamps

The first experiment assesses the impact of the number of timestamps on the algorithm’s
performance. To do so, the algorithm was run on different dynamic attributed graphs
having a different number of timestamps. The other graph characteristics were fixed:
2000 vertices and 8000 edges per graph and 2 attributes. Fig.4.23 shows that when the
number of timestamps increases, both the algorithm’s execution times and the number
of produced patterns increase exponentially. More precisely, the algorithm’s execution
times increase slowly until 14 timestamps (≤ 874s) and increase very quickly beyond this
threshold. Indeed, the number of additions and extensions that must be performed is
even more important when the number of timestamps is high (see Section 4.3).

5.2.2 Impact of the number of attributes

The second experiment studies the impact of the number of attributes on the algorithm’s
performance. To do so, the algorithm was run on different dynamic attributed graphs
having a different number of attributes. The other graph characteristics constraints were
fixed: 2000 vertices and 8000 edges per graph and 8 timestamps. Fig.4.24 shows that the
number of produced patterns increases linearly with the number of attributes. Indeed,
the increase of the number of attributes increases the number of generated candidate
subgraphs that have to be extracted in the dynamic attributed graph. Despite the search
space growth, the runtimes of the algorithm remain low for less than 8 attributes (< 672s).
This is notably thanks to the graph addition strategy that allows reducing the runtimes
consumed by avoiding exponential subgraphs traversal during the generation of candidate
subgraphs (see Section 4.3). In a nutshell, the impact of the increase of the attributes
number on the overall performance of the algorithm is relatively small.

126

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 127

0

5 · 105

1 · 106

1.5 · 106

2 · 106

N
um

be
r

of
pa

tt
er

ns

3 6 9 12 15 18 0
10,000

50,000

1 · 105

Number of timestamps

Ex
ec

ut
io

n
tim

e
(s

)

Execution time (s)
Number of patterns

Figure 4.23: Impact of the number of timestamps (synthetic datasets)

5.2.3 Impact of the number of vertices and edges

The third experiment evaluates the impact of the number of vertices and edges per graph
(i.e, per Gt) in the dynamic attributed graph on the algorithm’s performance. To do so,
the algorithm was run on different dynamic attributed graphs having a different number
of vertices and edges per graph. The other graph characteristics were fixed: 2 attributes
and 8 timestamps. Fig.4.25 shows that when the number of vertices and edges per graph
increases, the algorithm’s runtimes grow quickly while the number of produced patterns is
relatively more stable. Increasing the number of vertices and number of edges per graph
implies that more vertices and edges are traversed to find occurrences in the dynamic
attributed graph (see Section 4.3).

5.3 Qualitative Evaluation

5.3.1 Analysis of US Flights patterns

We carry out a qualitative analysis of patterns extracted by the FSSEMiner algorithm in
the US Flights dataset. The objective is to find interesting patterns that show the impact
of the Katrina hurricane on the US Flights traffic. To do so, the user-defined constraints
are set as follows:

• minvol = 2 and maxvol = 4 because we want to extract patterns representing the
evolution of relatively small airport networks;

• mincom = 1 because we want to extract patterns capturing the impact of the
disruptive event on the airport network structure (addition and removal of new
airport);

• minsup = 25 meaning that patterns should be frequent at least 25 times in time
and space. We observed through several executions of the algorithm that frequent

127

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 128

2 4 6 8 100

50,000

1 · 105

1.5 · 105

N
um

be
r

of
pa

tt
er

ns

2 4 6 8 100

10,000

20,000

30,000

40,000

50,000

Number of attributes

Ex
ec

ut
io

n
tim

e
(s

)

Execution time (s)
Number of patterns

Figure 4.24: Impact of the number of attributes (synthetic datasets)

5,000
10,000
15,000
20,000
25,000
30,000
35,000

N
um

be
r

of
pa

tt
er

ns

250
/40

00

500
/80

00

100
0/1

600
0

200
0/3

200
0

400
0/6

400
0

800
0/1

280
00

100
00/

160
000

5,000
10,000
15,000
20,000
25,000
30,000
35,000

Number of V/E per graph

Ex
ec

ut
io

n
tim

e
(s

)

Execution time (s)
Number of patterns

Figure 4.25: Impact of the number of vertices and edges (synthetic datasets)

patterns are extracted from this value of minsup.

Fig. 4.26 shows an example of a FSSE pattern extracted from the US Flights traffic
dataset. Using the formal notation, this pattern is as follows:

(Cancelled + DepartureDelay + ArrivalDelay+, Diverted− ArrivalDelay+,
Cancelled + DepartureDelay + ArrivalDelay+);

128

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 129

Diverted=
ArrivalDelay+

Cancelled+
DepartureDelay+
ArrivalDelay+

1

2

3
Cancelled+
DepartureDelay+
ArrivalDelay+

01/08/2005 11/09/2005

Cancelled+
Diverted=
DepartureDelay+
ArrivalDelay+

Cancelled+
Diverted=
DepartureDelay+
ArrivalDelay+

1

2

33
Cancelled+
DepartureDelay+
ArrivalDelay=

07/08/2005

Cancelled=
DepartureDelay-
ArrivalDelay-

Cancelled=
ArrivalDelay-

1

2

33

Diverted=
DepartureDelay-
ArrivalDelay-

. . .

DepartureDelay-
ArrivalDelay=

4

An example of 28 Occurrences: (Kalamazoo, Detroit, Minneapolis); (Kalamazoo, Detroit, Minneapolis); ... ;
(Kalamazoo, Detroit, Minneapolis, Chicago)

Figure 4.26: A FSSE pattern extracted from the US Flights dataset

(Cancelled + Diverted−DepartureDelay + ArrivalDelay+, Cancelled + Diverted−
DepartureDelay + ArrivalDelay+, Cancelled + DepartureDelay + ArrivalDelay =);

...;
(Cancelled = ArrivalDelay−, Cancelled = DepartureDelay − ArrivalDelay−,

Diverted−DepartureDelay − ArrivalDelay−, DepartureDelay − ArrivalDelay =)

This pattern depicts a frequent evolution of the departure/arrival delays and can-
celled/diverted flights in several aiport networks composed by 3 to 4 airports (respecting
minvol and maxvol constraints). This is a sequence of size 6, i.e., an evolution over 6
timestamps (here, weeks). For clarity of presentation, only the first, the second and the
last airport networks of the sequence are shown. Vertices are airports and edges are the
possible flight connections between airports. Vertex attributes are the number of depar-
ture delays, the number of arrival delays, the number of cancelled flights and the number
of diverted flights. In the following, several observations on the pattern are presented.

First, the FSSE pattern appears 28 times in time and space in the dataset (respecting
the minsup constraint). In other words, 28 airport networks were affected by the hurricane
in the same manner. For instance, the following airport network has the pattern:

(Kalamazoo, Detroit, Minneapolis);
(Kalamazoo, Detroit, Minneapolis);

...;
(Kalamazoo, Detroit, Minneapolis, Chicago).

Second, it is observed that in the first two weeks, when the hurricane came, delays and
cancellations increased at destination and arrival airports, while diverted flights always
remained the same. It shows that airlines preferred to cancel and delay flights rather than
divert flights when the hurricane came. It may be because diverting flights generates
higher costs than delays and cancellations for airlines. Six weeks later, it is noticed
that cancellations and diverted flights became stable while delays decreased because the
hurricane became weaker.

Third, the pattern shows an evolution in terms of topology. The network of three

129

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 130

Figure 4.27: Map of US to show the change in the airport network

airports became four. This means that new flight routes via a new airport were added
by airlines in the last week 11/09/2005. For instance, in the previously mentionned oc-
currence of the pattern, the new airport, Chicago, was added to the airport network
(Kalamazoo, Detroit, Minneapolis). Referring to the Fig 4.27, we notice that the new
added airport, Chicago, is located at the center position of the previous airport network
(Kalamazoo, Detroit, Minneapolis), which ensures that airline connections are more con-
venient as it is close to all other airports.

Finally, we compare the extracted FSSE pattern to the closest pattern, the recurrent
patterns (Cheng et al., 2017), to evaluate the advantage of the FSSE pattern. To do so,
we study the reccurrent patterns extracted by the RPMiner algorithm proposed in (Cheng
et al., 2017) from the same US Flights dataset. The following pattern is extracted:

(⟨(Bangor : DepartureDelay + |Boston : DelayArrival + |
NewportNews : DelayDeparture+)
(Augusta : Cancelled− |Bangor :

Cancelled−)⟩, {01/08/2005, 08/08/2005, 29/08/2005, 05/09/2005})

This recurrent pattern is also illustrated in Fig 4.28. It depicts an evolution
of the departure/arrival delays and cancelled/diverted flights in an airport network
(Bangor, Boston, NewportNews) over 2 weeks (since it is a sequence of size 2). Moreover,
it is frequent 4 times in the dataset (at weeks 01/08/2005, 08/08/2005, 29/08/2005 and
05/09/2005). Contrary to the previous FSSE pattern, this reccurrent pattern represents
an evolution of one specific aiport network. Thus, the advantage of the FSSE pattern is
to be representative of the evolutions of several airport networks. This is possible because
the FSSE pattern takes into account the spatial dimension, i.e., that an evolution can
occur at different locations.

5.3.2 Analysis of China Covid patterns

We carry out a qualitative analysis of patterns extracted by the FSSEMiner algorithm
in the China Covid Dataset. The goal is to find interesting patterns to analyze the

130

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 131

 DelayArrival+

DepartureDelay+

Bangor

Boston

Newport
News

DelayDeparture+

01/08/2005

 Cancelled-

Cancelled-

Augusta

Boston

08/08/2005

29/08/2005

05/09/2005

08/08/2005

15/08/2005

05/08/2005

12/09/2005

Figure 4.28: A reccurrent pattern extracted from the US Flights dataset in (Cheng et al.,
2017)

transmission of COVID in 2020 and its variant Omicron in 2022 through travel flows
between cities in China. To do so, the user-defined constraints are set as follows:

• minvol = 5 and maxvol = 8 because we want to extract patterns describing the
evolution of COVID cases in networks of cities having diverse sizes (small, medium,
big, mega) ;

• mincom = 5 because we are not interested in the addition and removal of new cities
in the city networks ;

• minsup = 15 meaning that patterns should be frequent at least 15 times in time
and space. We observed through several executions of the algorithm that frequent
patterns are extracted from this value of minsup.

Two FSSE patterns are extracted by the algorithm. Fig 4.29 a) illustrates one extracted
pattern to analyse the transmission of COVID in a period during which COVID cases were
booming (from 15/02/2020 to 04/03/2020). Similarly, Fig 4.29 b) illustrates another
extracted pattern to analyse the transmission of the Omicron variant from 17/04/2022 to
05/05/2022. Here, vertices are cities and edges are the possible travel flows between cites.
Vertex attributes are the city sizes (small, medium, big and mega), the total number of
new COVID cases, new recoveries and new deaths. The two FSSE patterns depict frequent
evolutions of the total number of new COVID cases/new recoveries/new deaths in several
city networks composed by 5 to 8 cities (respecting minvol and maxvol constraints).
They are sequences of size 7 representing evolutions over 7 timestamps (here, 7 days).
The first pattern occurs 21 times in the dataset, while the second occurs 14 times. For
clarity of presentation, only the first, the second and the last timestamps of the sequence

131

5. EXPERIMENTAL ASSESSMENTS OF FSSEMINER 132

b) Extracted Pattern in 2022 to analyse the transmission of Omicron Variant of COVID-19

1

2

4

15/02/2020 04/03/202018/02/2020

...

An Example of 21 Occurrences: (Beijing, Shenyang,Taiyuan, Hengshui, Yingkou); (Beijing, Shenyang,Taiyuan, Hengshui,
Yingkou); ... ;(Beijing, Shenyang,Taiyuan, Hengshui, Yingkou)

MegaCity
NewCases+++
NewRecovery=
NewDeath=

SmallCity
NewCases+
NewRecovery=
NewDeath=

Medium-sizedCity
NewCases++
NewRecovery=
NewDeath=

3

5

Medium-sizedCity
NewCases++
NewRecovery=
NewDeath=

SmallCity
NewCases+
NewRecovery=
NewDeath=

1

2

4

MegaCity
NewCases+++
NewDeath=

SmallCity
NewCases=
NewRecovery=
NewDeath=

Medium-sizedCity
NewCases++
NewRecovery=
NewDeath+

3

5

Medium-sizedCity
NewCases++
NewRecovery=
NewDeath+

SmallCity
NewCases+
NewRecovery=
NewDeath+

1

2

4

MegaCity
NewCases=
NewRecovery+++
NewDeath=

SmallCity
NewCases=
NewRecovery+
NewDeath=

Medium-sizedCity
NewCases=
NewRecovery++
NoNewDeath

3

5

Medium-sizedCity
NewCases=
NewRecovery+++
NewDeath=

SmallCity
NewCases=
NewRecovery+
NewDeath=

1

2

4

17/04/2022 05/05/202220/04/2022

...

An Example of 14 Occurrences: (Beijing, Shenyang,Taiyuan, Hengshui, Yingkou); (Beijing, Shenyang,Taiyuan, Hengshui,
Yingkou); ... ;(Beijing, Shenyang,Taiyuan, Hengshui, Yingkou)

MegaCity
NewCases+++
NewRecovery=
NewDeath=

SmallCity
NewCases=
NewDeath=

Medium-sizedCity
NewCases++
NewRecovery=
NewDeath=

3

5

Medium-sizedCity
NewCases++
NewRecovery=
NewDeath=

SmallCity
NewCases=
NewRecovery=
NewDeath=

1

2

4

MegaCity
NewCases+++
NewRecovery+++
NewDeath=

SmallCity
NewCases=
NewRecovery=
NewDeath=

Medium-sizedCity
NewCases+
NewRecovery++
NewDeath=

3

5

Medium-sizedCity
NewCases+
NewRecovery++
NewDeath=

SmallCity
NewCases=
NewDeath=

1

2

4

MegaCity
NewCases=
NewRecovery=
NewDeath=

SmallCity
NewCases+
NewRecovery=
NewDeath=

Medium-sizedCity
NewCases=
NewRecovery+
NewDeath=

3

5

Medium-sizedCity
NewRecovery+
NewDeath=

SmallCity
NewCases+
NewDeath=

a) Extracted Pattern in 2020 to analyse the transmission of COVID-19

Figure 4.29: Two FSSE patterns extracted from COVID dataset

are shown. In the following, several observations on the pattern are presented.

First, the two chosen patterns highlight the transmission of COVID in a mixed city
network which is composed of different city sizes. We notice that the city sizes and the new
case numbers are strongly correlated. In 2020 and 2022, COVID spreads very quickly in
medium and megacities, while new cases in small cities have shown almost zero growth. It
is probably because in small cities, the transport connections are much easier to control.
For example, a small city has in general only two train stations and one airport while
in medium-sized and big cities, it could have up to 109 train stations and 12 airports.
Moreover, the flow is in general 30 times higher than small cities, which makes it much
more difficult to miss any positive case.

Second, it is observed that the COVID caused many severe consequences for the period
from 15/02/2020 to 04/03/2020. The number of deaths began to increase in three days
after the emergence of new COVID cases (Fig 4.29 a)). Moreover, it took in average more
than 10 days for recovery. While in 2022, the virulence of variant Omicron was much
weaker. From 17/04/2022 to 05/05/2022, there were almost no deaths. Moreover, the
recoveries began to emerge only three days after new detected cases (Fig 4.29 b)).

To conclude, these two patterns allow studying virus transmission in different scales

132

6. CONCLUSION 133

of cities (among big cities, small cities, medium-sized or mixed city network). We are
able to compare the virulence of different virus variants, which provides insights about
the relative efficient measures to adopt (e.g. quarantine, isolation policies). In future
works, we plan to generate edges to model the flows of different transportation modes
(air flights, trains and bus instead of the total flow) to analyse their individual impact on
virus transmission.

6 Conclusion
Querying Temporal Graphs (TG) allows finding isolated pieces of information to an-
swer straightforward business questions concerning temporal interconnected data (‘What’,
‘Who’, ‘Where’ and ‘When’). By combining information pieces from TG, we may answer
more complex business questions, such as ‘How’ certain phenomena (or events) occurred
within TG contexts. As our understanding of TG deepens, these insights gradually con-
verge into knowledge, which can be used for decision-making. To do so, we have chosen
to focus on the analytical approach of Pattern Mining in TG. Pattern Mining techniques
for TG allow extracting patterns that combine information from the diverse dimensions
of TG (topology, attributes, time) to represent evolution mechanisms present in TG. This
extraction is done through the design of mining algorithms.

One of the main challenges in Pattern Mining in TG is to design patterns capturing the
maximum information from TG’ dimensions to enrich their explanatory power. However,
current patterns are limited. They may be not sequential (i.e., describing a sequence of
events in order to account for the temporal relationships between events) or complete (i.e.,
accounting for all the information derived from the diverse evolution types of TG). To
the best of our knowledge, no pattern is representative (i.e., it accounts for the evolution
of several groups of vertices). In response to these limitations, we have proposed a novel
pattern, called Frequent Sequential Subgraph Evolutions (FSSE). The advantage of our
pattern is to be sequential, complete and representative.

The other main challenge in Pattern Mining in TG is to design mining algorithms
minimizing the computational cost. Indeed, the complex data structure of TG requires
exploring its different dimensions to extract patterns. In the case of our pattern, the
challenge is even more important, as it captures more information from TG dimensions
than current patterns. To do so, we have proposed a novel algorithm, the FSSEMiner.
It enables to extract FSSE patterns from TG. The advantage of our algorithm is to rely
on a novel mining strategy we have proposed, the graph addition. It allows avoiding
repetitive graph traversals to save computation time while guaranteeing the extraction of
our complete pattern.

We have carried out experiments on synthetic datasets to evaluate how the compu-
tation time of the algorithm FSSEMiner varies according to different graph parameters
(timestamps, attributes and number of vertices and edges). We have observed that the
algorithm is relatively scalable considering that users will not choose too large graph pa-
rameters (more than 14 timestamps and 8 attributes) since this makes the analysis of
patterns more difficult. We have also made experiments over two real datasets including
disruptive events : (i) a dataset on the US Flights traffic during the Katrina hurricane
and (ii) a dataset on the travel flows between cities and COVID cases in China during the

133

6. CONCLUSION 134

COVID periods. The experiments have shown that the extracted patterns by the FSSEM-
iner algorithm provide interesting insights to understand the impacts of the events and
make more informed decisions.

134

Chapter 5

Conclusion

Contents
1 Contributions . 136
2 Future Work . 138

2.1 Short-term plan . 138
2.2 Mid-term plan . 139
2.3 Long-term plan . 139

135

1. CONTRIBUTIONS 136

1 Contributions
The digital world provides a representation of real-world entities that are becoming in-
creasingly interconnected (e.g., in social platforms). Data generated by interconnected
entities of the real-world has contributed to the emergence of the concept of Graphs.
Graphs, a collection of vertices connected by edges, naturally represent real-world entities
and their relationships. Nevertheless, real-world entities and their relationships evolve
continually over time at different levels : (i) entities (or relationships) may appear and
disappear over time, (ii) the descriptive characteristics of entities (or relationships) may
be added or removed over time and (iii) the value of these descriptive characteristics may
change over time.

The temporal evolution of graph data opens new analytical opportunities. However,
static graphs are not enough to integrate the concept of temporal evolution in graph
data. Thus, this thesis has addressed the problem of enabling analyses on graph data
enriched with temporal evolution. This problem induces three main challenges. First, to
incorporate static graphs with temporal evolution, it requires determining (i) the levels of
the graph subject to the evolution, (ii) the abstraction levels embodied by the graph with
temporal evolution in terms of its proximity to a real-world or a technical representation
and, (iii) the strategy to manage the changes in graph data. Second, to explore graphs
with temporal evolution, it requires enabling users to find information to answer simple
business-oriented questions (‘What?’, ‘Who?’, ‘Where?’, ‘When?’). Third, to go deeper
in the exploration of graphs with temporal evolution, it implies to extract knowledge to
answer complex business-oriented questions (‘How?’). Knowledge here is a combination
of information pieces from the multiple dimensions of a graph with temporal evolution
that serve for understanding some phenomena (or events) and helping decision-making.
Facing these three challenges, we have proposed a solution in three parts, as follows.

First, we have proposed a complete management solution for graphs with temporal evo-
lution, from a conceptual model, called Temporal Graph (TG), to its implementation. Our
conceptual model enables to integrate the concept of temporal evolution in static graphs.
It has several advantages compared to existing models. First, it provides a conceptual
view to represent closely real-world applications, notably by introducing the concept of
states to capture the evolution of entities and relationships. Second, our model associates
the concept of temporal evolution at all levels of the graph (topology, attribute set and
attribute value) enabling the direct access to the information about changes during anal-
yses. Third, we have proposed an automatic (i.e., no specific development is required)
implementation process of our conceptual model into a physical technical environment.
It consists of direct mapping rules from our conceptual model to the logical property
graph model, which is compatible with several graph-oriented NoSQL data stores. The
experimental results have shown that our management solution is (i) feasible, i.e., im-
plementable into graph-oriented NoSQL data stores (here, we chose Neo4j), (ii) usable
for business analyses, (iii) efficient in terms of storage and query performance compared
to the classic TG models (graph snapshots), and (iv) scalable when the data volume in-
creases. Moreover, our management solution has proven its value in the industry. The
concepts of our TG will be used to bring a temporal layer to the graph-oriented software
of ACTIVUS Group. Moreover, the Neo4j company has contacted us following the publi-
cation of our article Andriamampianina et al. (2022a) to discuss the concepts of our TG
and its implementation for their own applications.

136

1. CONTRIBUTIONS 137

Second, we have proposed a querying solution to find information in graphs with tem-
poral evolution to enable users to answer simple ‘What?’, ‘Who?’, ‘Where?’, ‘When?’
questions. The advantage of our querying solution compared to current querying so-
lutions for graphs with temporal evolution is to be complete. It starts from a generic
framework to an implementation framework. On the one hand, the generic framework fo-
cuses on the design of business analyses on a graph with temporal evolution by providing
two conceptual operators. The matchpredicates allows finding time dependent information
on the attribute dimension of temporal graph data. The matchpattern allows finding time
dependent information on the topology dimension of temporal graph data. Unlike current
querying solutions, these operators allow to fully manipulate the granularities of the differ-
ent dimensions of temporal graph data. Moreover, they are based on the business-oriented
concepts of our TG model to be more user-oriented. As they are composable, they facili-
tate the expression of complex queries and their extension to add new functionalities. On
the other hand, the implementation framework guarantees that our conceptual operators
are directly compatible to different textual query languages for the property graph model
(here, query languages of Neo4j and OrientDB). Indeed, we have proposed mapping rules
of our conceptual operators to logical operators for querying the property graph model.
In a nutshell, our querying solution has the advantage of being independent of a specific
implementation but compatible with several implementation alternatives. We have veri-
fied through experiments that the querying solution allows effectively applying business
analyses on real-world datasets.

Third, we have proposed an analytical approach to extract knowledge in graphs with
temporal evolution to enable users to answer ‘How ?’ questions. This analytical approach
is Pattern Mining. It involves designing (i) a pattern to specify the combination of in-
formation pieces from the dimensions of a graph with temporal evolution to be extracted
and (ii) an algorithm to extract this pattern. We observed in the literature that existing
patterns capture partially the information from the dimensions of graphs with temporal
evolution. This hinders the ability to extract complete and meaningful understanding of
hidden evolution mechanisms. To do so, we have proposed a new pattern called Frequent
Sequential Subgraph Evolution (FSSE). It fully captures the information from all dimen-
sions within a graph with temporal evolution. In addition, it is more representative than
existing patterns. It allows representing evolution mechanisms that cover several groups
of entities instead of a single group as in current patterns. Representative patterns are
indeed more useful for users (notably, decision-makers) to obtain a global understand-
ing of evolution trends. Moreover, we have proposed a novel algorithm (FSSEMiner)
to extract our novel pattern. Since all pattern mining algorithms face the problem of
high computational complexity, we have proposed the mining strategy of graph addition
to reduce the latter. The experiments we conducted have shown that (i) our algorithm
is relatively scalable, considering that users will not choose too large datasets since this
makes the analysis of patterns more difficult, and (ii) our pattern is useful to understand
the impacts of disruptive events in real-world datasets.

This Ph.D. research has been validated through different publications, namely one
international journal paper (DKE (Andriamampianina et al., 2022a)), three international
conference papers (RCIS (Andriamampianina et al., 2021), CAISE (Andriamampianina
et al., 2022b) and PAKDD (Cheng et al., 2023) and one national conference paper (EDA
(Andriamampianina et al., 2020)). Table 5.1 summarizes the main topics addressed by
each paper. All main topics have been discussed in the previous chapters of the thesis.

137

2. FUTURE WORK 138

Table 5.1: Main topics addressed by the publications during my thesis

Modelling TG
(Chapter 2)

Querying
Information in TG

(Chapter 3)

Knowledge
Discovery in TG

(Chapter 4)
International

Journals (Andriamampianina et al., 2022a) ✓

International
Conferences

(Andriamampianina et al., 2021) ✓
(Andriamampianina et al., 2022b) ✓

(Cheng et al., 2023) ✓
(Andriamampianina et al., 2023) (Future work)

National
Conferences (Andriamampianina et al., 2020) ✓

2 Future Work

2.1 Short-term plan

2.1.1 Implementation Alternatives of our TG Model and Operators

Currently, we have implemented our solutions into Neo4j and OrientDB data stores. In
the short term, we intend to propose several alternatives for the implementation of our
conceptual model of TG and our conceptual operators.

As a first step, we will implement our TG model and our conceptual operators in other
environments: (i) on-premise graph data stores (e.g., ArangoDB1), and (ii) on-cloud graph
data stores (e.g., Azure Cosmos DB 2 and AWS Neptune 3). In the same way, we will
experiment alternative mapping rules with Neo4j that have been discussed with R&D
engineers from the Neo4j company.

As a second step, we will make new experiments to evaluate the performance of these
implementation alternatives (Cheng et al., 2019; Besta et al., 2023b). To do so, we
will establish comparison criteria including (i) quantitative criteria such as volumetry,
query runtime, (etc.) (ii) qualitative criteria such as usability evaluation through three
aspects: effectiveness, efficiency and satisfaction (ISO, 2018). This contributes to the
data management layer of the software of ACTIVUS Group to meet the needs of clients
on the choice of implementation environments.

2.1.2 Centrality Analysis in Temporal Graph Data

Classically, another analytical approach dedicated to static graphs is using centrality
metrics. Centrality metrics enable to identify the most central or influential entities in
graphs (Wan et al., 2021; Meng et al., 2022). We propose to extend these concepts
to our Temporal Graph. To take into account the evolution of entities’ influence, we
intend to propose the concept of Semantic Temporal Centrality (Andriamampianina et al.,
2023). The advantages of this centrality are to include the various types of entities and
relationships, as well as temporal evolutions.

1https://arangodb.com/
2https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
3https://aws.amazon.com/neptune/

138

https://arangodb.com/
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://aws.amazon.com/neptune/

2. FUTURE WORK 139

2.2 Mid-term plan

2.2.1 Updating Temporal Graph Data

We have proposed a modelling of graphs with temporal evolution. A promising perspective
is to consider the ingestion of new data, which leads to the evolution of temporal graph
data at the topology or attribute levels (Castelltort and Laurent, 2013; Hant et al., 2014;
Steer et al., 2020; Besta et al., 2023a). First, we must define an automatic detection
strategy of source changes: (i) the addition or deletion of sources, (ii) the modification
of sources’ schema and (iii) the update of value in sources. Second, we must define
an automatic integration of these changes at the levels of topology and attribute. At the
topology level, changes consist in the addition or removal of new entities (or relationships)
and in the update of their valid times. At the attribute level, changes consist in creating
new states of entities (or relationships) triggered by the addition of new attributes of
entities (or relationships), the update of their value and valid times. Finally, we must
choose a historization process depending on how the data from the sources evolves.

2.2.2 Improvements of Knowledge Discovery in Temporal Graph Data

There are several opportunities to improve the Knowledge Discovery process we proposed.
First, the experiments have shown that the algorithm FSSEMiner records exponential
execution times when the characteristics (number of vertices/edges/attributes) of a graph
with temporal evolution are too large. We plan to make a distributed version of the
algorithm to further improve its performance. We will compare the efficiency of large-
scales analyses according to different Big Data storage and processing platforms (Gan
et al., 2017).

Second, the experiments have shown that the algorithm generates a lot of extracted
patterns. In a first step, we will propose more constraints to users to better specify their
needs (Robardet, 2009). In a second step, we will propose a post-processing method
to reduce the number of FSSE patterns dedicated to final users (Fournier-Viger et al.,
2020a). This could facilitate the pattern analysis and interpretation.

Third, currently the FSSE pattern we propose includes the addition and removal of
entities’ attributes, the update in entities’ attribute value and the addition and removal
of relationships. To the best of our knowledge, it is the most complete in the literature
(Fournier-Viger et al., 2020a). However, we will further improve our pattern by integrating
the attributes on relationships and their evolution. The pattern will capture more infor-
mation, making it more suitable for various applications and enhancing its explanatory
power.

2.3 Long-term plan

2.3.1 New Exploration Perspectives

Vizualization of Massive Temporal Graph Data From a visualization point of
view, the challenge is to represent the evolution of relationships and entities in a readable
and scalable manner. Current techniques need to be extended to offer new solutions for
visualizing large amounts of graph data evolving over time. There are several promising
lines of research to extend the concepts of: (i) hyperbolic graph and fish-eye views to

139

2. FUTURE WORK 140

facilitate descriptive analyses (Miller et al., 2022), (ii) animation-based views in temporal
graphs to highlight data evolutions (Beck et al., 2017), (iii) data representation through
trajectories describing spatio-temporal movements of entities (Sakr et al., 2022; Godfrid
et al., 2022), and (iv) representation of relationships between objects in images (Clément
et al., 2016, 2020).

Predictive Analysis In this thesis, we address the descriptive analysis of temporal
graph data via a querying solution and an explanatory analysis of temporal graph data
via a knowledge discovery solution. To go further in the analysis of temporal graph
data, we plan to deal with predictive analysis, i.e., make predictions of future events,
trends, or outcomes. There are several promising lines of research on this topic. One
promising line of research is graph embedding. It is used to transform a temporal graph
into low-dimension vectors, preserving the important structural and semantic information
for various predictive tasks (Barros et al., 2021; Wu et al., 2022). Another promising line of
research is attention mechanisms in predictive algorithms, which allow assigning different
levels of importance of data in temporal graphs when making predictions (Wang et al.,
2019).

2.3.2 Temporal Graph in Data Lakes

A long-term perspective would be to integrate this work into a more complex architecture
dedicated to data sciences. In particular, numerous works have provided solutions in data
lake architectures (Ravat and Zhao, 2019a). Such architectures comprise several data
zones (ingestion zone, preparation zone and analysis zone) and a governance zone. For
the governance zone, a key element is metadata management (Ravat and Zhao, 2019b),
which makes it possible to describe not only the data in different zones, but also the
transformation processes (Megdiche et al., 2021) and even the analyses carried out on
this data (Dang et al., 2021). Therefore, we will propose new solutions at the levels of
metadata and data management. Currently, metadata management solutions are based
on graph-based modelling. In this context, one problem is still open: how to manage the
temporal evolution of metadata? New research perspectives are therefore (i) to integrate
the temporal evolutions in these metamodels and, (ii) to propose new querying and vi-
sualization solutions of massive temporal graph data in order to explore the content of a
data lake. Another perspective is to integrate a temporal graph as one of the components
for data management in a data lake. To combine different storage spaces, we will need
to define new data matching or mapping mechanisms that evolve over time (Zhang and
Ives, 2020).

140

BIBLIOGRAPHY 141

Bibliography
Adrian, M. and Jaffri, A. (2022). Market Guide for Graph Database Management Systems.

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between sets
of items in large databases. In Proceedings of the 1993 ACM SIGMOD international
conference on Management of data - SIGMOD ’93, pages 207–216, Washington, D.C.,
United States. ACM Press.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of the
eleventh international conference on data engineering, pages 3–14. IEEE.

Agrawal, R., Srikant, R., and others (1994). Fast algorithms for mining association rules.
In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499.
Santiago, Chile.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843.

Andriamampianina, L., Ravat, F., Song, J., and Vallès-Parlangeau, N. (2020). A generic
modelling to capture the temporal evolution in graphs. In 16e journées EDA: Business
Intelligence & Big Data (EDA 2020), pages 19–32.

Andriamampianina, L., Ravat, F., Song, J., and Vallès-Parlangeau, N. (2021). Towards
an Efficient Approach to Manage Graph Data Evolution: Conceptual Modelling and
Experimental Assessments. In Cherfi, S., Perini, A., and Nurcan, S., editors, Research
Challenges in Information Science, pages 471–488. Springer International Publishing.

Andriamampianina, L., Ravat, F., Song, J., and Vallès-Parlangeau, N. (2022a). Graph
data temporal evolutions: From conceptual modelling to implementation. Data &
Knowledge Engineering, 139:102017.

Andriamampianina, L., Ravat, F., Song, J., and Vallès-Parlangeau, N. (2022b). Querying
Temporal Property Graphs. In Franch, X., Poels, G., Gailly, F., and Snoeck, M., editors,
Advanced Information Systems Engineering, volume 13295, pages 355–370. Springer
International Publishing, Cham. Series Title: Lecture Notes in Computer Science.

Andriamampianina, L., Ravat, F., Song, J., and Vallès-Parlangeau, N. (2023). Semantic
Centrality for Temporal Graphs. In Abelló, A., Vassiliadis, P., Romero, O., Wrembel,
R., Bugiotti, F., Gamper, J., Vargas Solar, G., and Zumpano, E., editors, New Trends
in Database and Information Systems, volume 1850, pages 163–173. Springer Nature
Switzerland, Cham. Series Title: Communications in Computer and Information Sci-
ence.

Angles, R. (2018). The Property Graph Database Model. In AMW.

Angles, R., Arenas, M., Barcelo, P., Boncz, P., Fletcher, G., Gutierrez, C., Lindaaker, T.,
Paradies, M., Plantikow, S., Sequeda, J., van Rest, O., and Voigt, H. (2018). G-CORE:
A Core for Future Graph Query Languages. In Proceedings of the 2018 International
Conference on Management of Data, pages 1421–1432, Houston TX USA. ACM.

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., and Vrgoč, D. (2017). Foun-

141

BIBLIOGRAPHY 142

dations of Modern Query Languages for Graph Databases. ACM Computing Surveys,
50(5):68:1–68:40.

Angles, R. and Gutierrez, C. (2008). Survey of graph database models. ACM Computing
Surveys, 40(1):1–39.

Angles, R. and Gutierrez, C. (2018). An introduction to Graph Data Management.
arXiv:1801.00036 [cs], pages 1–32. arXiv: 1801.00036.

Aslay, C., Nasir, M. A. U., De Francisci Morales, G., and Gionis, A. (2018). Mining
Frequent Patterns in Evolving Graphs. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 923–932. ACM.

Barros, C. D., Mendonça, M. R., Vieira, A. B., and Ziviani, A. (2021). A survey on
embedding dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1–37. Publisher:
ACM New York, NY.

Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A Taxonomy and Survey of
Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133–159.

Bellinger, G., Castro, D., and Mills, A. (2004). Data, information, knowledge, and wisdom.

Besta, M., Fischer, M., Kalavri, V., Kapralov, M., and Hoefler, T. (2023a). Practice
of Streaming Processing of Dynamic Graphs: Concepts, Models, and Systems. IEEE
Transactions on Parallel and Distributed Systems, 34(6):1860–1876.

Besta, M., Gerstenberger, R., Peter, E., Fischer, M., Podstawski, M., Barthels, C., Alonso,
G., and Hoefler, T. (2023b). Demystifying graph databases: Analysis and taxonomy
of data organization, system designs, and graph queries. ACM Computing Surveys,
56(2):1–40. Publisher: ACM New York, NY.

Bohlen, M., Busatto, R., and Jensen, C. (1998). Point-versus interval-based temporal
data models. In Proceedings 14th International Conference on Data Engineering, pages
192–200, Orlando, FL, USA. IEEE Comput. Soc.

Campos, A., Mozzino, J., and Vaisman, A. (2016). Towards Temporal Graph Databases.
arXiv:1604.08568 [cs]. arXiv: 1604.08568.

Castelltort, A. and Laurent, A. (2013). Representing history in graph-oriented nosql
databases: A versioning system. In Eighth International Conference on Digital Infor-
mation Management (ICDIM 2013), pages 228–234. IEEE.

Cattuto, C., Quaggiotto, M., Panisson, A., and Averbuch, A. (2013). Time-varying social
networks in a graph database: a Neo4j use case. In First International Workshop on
Graph Data Management Experiences and Systems, GRADES ’13, pages 1–6. Associa-
tion for Computing Machinery.

Cheng, Y., Ding, P., Wang, T., Lu, W., and Du, X. (2019). Which Category Is Better:
Benchmarking Relational and Graph Database Management Systems. Data Science
and Engineering, 4(4):309–322.

Cheng, Z., Andriamampianina, L., Ravat, F., Song, J., Vallès-Parlangeau, N., Fournier-

142

BIBLIOGRAPHY 143

Viger, P., and Selmaoui-Folcher, N. (2023). Mining Frequent Sequential Subgraph
Evolutions in Dynamic Attributed Graphs. In Kashima, H., Ide, T., and Peng, W.-
C., editors, Advances in Knowledge Discovery and Data Mining, volume 13936, pages
66–78. Springer Nature Switzerland, Cham. Series Title: Lecture Notes in Computer
Science.

Cheng, Z., Flouvat, F., and Selmaoui-Folcher, N. (2017). Mining Recurrent Patterns in
a Dynamic Attributed Graph. In Advances in Knowledge Discovery and Data Mining,
volume 10235, pages 631–643. Springer.

Clément, M., Kurtz, C., and Wendling, L. (2020). Fuzzy directional enlacement landscapes
for the evaluation of complex spatial relations. Pattern Recognition, 101:107185.

Clément, M., Poulenard, A., Kurtz, C., and Wendling, L. (2016). Directional enlacement
histograms for the description of complex spatial configurations between objects. IEEE
transactions on pattern analysis and machine intelligence, 39(12):2366–2380.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to
algorithms. MIT press.

Dang, V.-N., Zhao, Y., Megdiche, I., and Ravat, F. (2021). A Zone-Based Data Lake
Architecture for IoT, Small and Big Data. In 25th International Database Engineering
& Applications Symposium (IDEAS 2021).

Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., and Vaisman, A. (2021). A model
and query language for temporal graph databases. The VLDB Journal, 30(5):825–858.

Desmier, E., Plantevit, M., Robardet, C., and Boulicaut, J.-F. (2012). Cohesive co-
evolution patterns in dynamic attributed graphs. In International Conference on Dis-
covery Science, pages 110–124. Springer.

Desmier, E., Plantevit, M., Robardet, C., and Boulicaut, J.-F. (2013). Trend mining in
dynamic attributed graphs. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 654–669. Springer.

Dignös, A., Böhlen, M. H., and Gamper, J. (2012). Temporal alignment. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD
’12, pages 433–444, New York, NY, USA. Association for Computing Machinery.

Fiedler, M. and Borgelt, C. (2007). Support computation for mining frequent subgraphs
in a single graph. In MLG.

Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J. C.-W., and Selmaoui-Folcher, N. (2019).
Mining significant trend sequences in dynamic attributed graphs. Knowledge-Based
Systems, 182:104797.

Fournier-Viger, P., He, G., Cheng, C., Li, J., Zhou, M., Lin, J. C.-W., and Yun, U.
(2020a). A survey of pattern mining in dynamic graphs. WIREs Data Mining and
Knowledge Discovery, 10(6):e1372.

Fournier-Viger, P., He, G., Lin, J. C.-W., and Gomes, H. M. (2020b). Mining attribute
evolution rules in dynamic attributed graphs. In International Conference on Big Data

143

BIBLIOGRAPHY 144

Analytics and Knowledge Discovery, pages 167–182. Springer.

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., and Thomas, R. (2017). A
survey of sequential pattern mining. Data Science and Pattern Recognition, 1(1):54–77.

Gan, W., Lin, J. C.-W., Chao, H.-C., and Zhan, J. (2017). Data mining in distributed
environment: a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 7(6):e1216. Publisher: Wiley Online Library.

Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., and Yu, P. S. (2019). A Survey of
Parallel Sequential Pattern Mining. ACM Transactions on Knowledge Discovery from
Data, 13(3):1–34. arXiv:1805.10515 [cs].

Gandhi, S. and Simmhan, Y. (2020). An Interval-centric Model for Distributed Com-
puting over Temporal Graphs. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1129–1140. IEEE.

Ghrab, A., Romero, O., Jouili, S., and Skhiri, S. (2018). Graph BI & Analytics: Current
State and Future Challenges. In Ordonez, C. and Bellatreche, L., editors, Big Data
Analytics and Knowledge Discovery, volume 11031, pages 3–18. Springer International
Publishing, Cham. Series Title: Lecture Notes in Computer Science.

Godfrid, J., Radnic, P., Vaisman, A., and Zimányi, E. (2022). Analyzing public transport
in the city of Buenos Aires with MobilityDB. Public Transport, 14(2):287–321.

Hant, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, W., and
Chen, E. (2014). Chronos: a graph engine for temporal graph analysis. In Proceedings
of the Ninth European Conference on Computer Systems - EuroSys ’14, pages 1–14,
Amsterdam, The Netherlands. ACM Press.

Holme, P. (2015). Modern temporal network theory: A colloquium. The European Physical
Journal B, 88(9):234.

Holme, P. and Saramäki, J. (2012). Temporal networks. Physics reports, 519(3):97–125.
Publisher: Elsevier.

Huang, H., Song, J., Lin, X., Ma, S., and Huai, J. (2016). TGraph: A Temporal Graph
Data Management System. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, pages 2469–2472. ACM.

ISO (2018). ISO 9241-11:2018(en), Ergonomics of human-system interaction — Part 11:
Usability: Definitions and concepts.

Jensen, C. S., Clifford, J., Gadia, S. K., Segev, A., and Snodgrass, R. T. (1992). A
glossary of temporal database concepts. ACM SIGMOD Record, 21(3):35–43.

Jian Pei, Jiawei Han, Mortazavi-Asl, B., Jianyong Wang, Pinto, H., Qiming Chen,
Dayal, U., and Mei-Chun Hsu (2004). Mining sequential patterns by pattern-growth:
the PrefixSpan approach. IEEE Transactions on Knowledge and Data Engineering,
16(11):1424–1440.

Johnston, T. and Weis, R. (2010). A Brief History of Temporal Data Management. In

144

BIBLIOGRAPHY 145

Managing Time in Relational Databases, pages 11–25. Elsevier.

Kaytoue, M., Pitarch, Y., Plantevit, M., and Robardet, C. (2014). Triggering patterns
of topology changes in dynamic graphs. In International Conference on Advances in
Social Networks Analysis and Mining, pages 158–165. IEEE.

Khurana, U. and Deshpande, A. (2013). Efficient snapshot retrieval over historical graph
data. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages
997–1008. IEEE.

Khurana, U. and Deshpande, A. (2016). Storing and Analyzing Historical Graph Data at
Scale. In EDBT.

Koloniari, G., Souravlias, D., and Pitoura, E. (2013). On Graph Deltas for Historical
Queries. CoRR, abs/1302.5549.

Kosmatopoulos, A., Giannakopoulou, K., Papadopoulos, A. N., and Tsichlas, K. (2016).
An Overview of Methods for Handling Evolving Graph Sequences. In Karydis, I.,
Sioutas, S., Triantafillou, P., and Tsoumakos, D., editors, Algorithmic Aspects of Cloud
Computing, volume 9511, pages 181–192. Springer International Publishing.

Lassila, O. and Swick, R. R. (1998). Resource description framework (RDF) model and
syntax specification.

Latapy, M., Viard, T., and Magnien, C. (2018). Stream Graphs and Link Streams for the
Modeling of Interactions over Time. Social Networks Analysis and Mining, 8(1):61:1–
61:29.

Luna, J. M., Fournier-Viger, P., and Ventura, S. (2019). Frequent itemset mining: A 25
years review. WIREs Data Mining and Knowledge Discovery, 9(6).

Madan, A., Cebrian, M., Moturu, S., Farrahi, K., and Pentland, A. S. (2012). Sensing
the ”Health State” of a Community. IEEE Pervasive Computing, 11(4):36–45.

Massri, M., Miklos, Z., Raipin, P., and Meye, P. (2022). Clock-G: A temporal graph
management system with space-efficient storage technique. In 2022 IEEE 38th Inter-
national Conference on Data Engineering (ICDE), pages 2263–2276, Kuala Lumpur,
Malaysia. IEEE.

Megdiche, I., Ravat, F., and Zhao, Y. (2021). Metadata Management on Data Processing
in Data Lakes. In Bureš, T., Dondi, R., Gamper, J., Guerrini, G., Jurdziński, T.,
Pahl, C., Sikora, F., and Wong, P. W., editors, SOFSEM 2021: Theory and Practice
of Computer Science, volume 12607, pages 553–562. Springer International Publishing,
Cham. Series Title: Lecture Notes in Computer Science.

Meng, Y., Qi, Q., Liu, J., and Zhou, W. (2022). Dynamic Evolution Analysis of Complex
Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021. Sus-
tainability, 14(12):7234. Number: 12 Publisher: Multidisciplinary Digital Publishing
Institute.

Miller, J., Kobourov, S., and Huroyan, V. (2022). Browser-based Hyperbolic Visualization
of Graphs. arXiv:2205.08028 [cs].

145

BIBLIOGRAPHY 146

Moffitt, V. Z. and Stoyanovich, J. (2017a). Temporal graph algebra. In Proceedings of
The 16th International Symposium on Database Programming Languages, DBPL ’17,
pages 1–12, Munich, Germany. Association for Computing Machinery.

Moffitt, V. Z. and Stoyanovich, J. (2017b). Towards sequenced semantics for evolving
graphs. In EDBT, pages 446–449.

Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., and Latora, V. (2013).
Graph Metrics for Temporal Networks. arXiv:1306.0493 [physics], pages 15–40. arXiv:
1306.0493.

Pei, J., Han, J., and Wang, W. (2007). Constraint-based sequential pattern mining: the
pattern-growth methods. Journal of Intelligent Information Systems, 28(2):133–160.

Pernelle, N., Säıs, F., Mercier, D., and Thuraisamy, S. (2016). RDF data evolu-
tion: efficient detection and semantic representation of changes. Semantic Systems-
SEMANTiCS2016, page 4.

Ramesh, S., Baranawal, A., and Simmhan, Y. (2020). A Distributed Path Query Engine
for Temporal Property Graphs. In 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), pages 499–508. IEEE.

Ravat, F., Song, J., Teste, O., and Trojahn, C. (2019). Improving the performance of
querying multidimensional RDF data using aggregates. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC ’19, pages 2275–2284. Associ-
ation for Computing Machinery.

Ravat, F. and Zhao, Y. (2019a). Data Lakes: Trends and Perspectives. In Hartmann,
S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A. M., and Khalil, I., editors,
Database and Expert Systems Applications, Lecture Notes in Computer Science, pages
304–313, Cham. Springer International Publishing.

Ravat, F. and Zhao, Y. (2019b). Metadata Management for Data Lakes. In Welzer, T.,
Eder, J., Podgorelec, V., Wrembel, R., Ivanović, M., Gamper, J., Morzy, M., Tzoura-
manis, T., Darmont, J., and Kamǐsalić Latifić, A., editors, New Trends in Databases
and Information Systems, volume 1064, pages 37–44. Springer International Publishing,
Cham. Series Title: Communications in Computer and Information Science.

Reinsel, D., Gantz, J., and Rydning, J. (2017). Data age 2025: The evolution of data to
life-critical.

Ren, C., Lo, E., Kao, B., Zhu, X., and Cheng, R. (2011). On querying historical evolving
graph sequences. Proceedings of the VLDB Endowment, 4(11):726–737.

Robardet, C. (2009). Constraint-based pattern mining in dynamic graphs. In 2009 ninth
IEEE international conference on data mining, pages 950–955. IEEE.

Rossi, R. A., Gallagher, B., Neville, J., and Henderson, K. (2013). Modeling dynamic
behavior in large evolving graphs. In Proceedings of the sixth ACM international con-
ference on Web search and data mining - WSDM ’13, pages 667–676. ACM Press.

Rost, C., Gomez, K., Täschner, M., Fritzsche, P., Schons, L., Christ, L., Adameit, T.,

146

BIBLIOGRAPHY 147

Junghanns, M., and Rahm, E. (2021). Distributed temporal graph analytics with
GRADOOP. The VLDB Journal.

Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., and Stavrakas, Y. (2015). A
flexible framework for understanding the dynamics of evolving RDF datasets. In Inter-
national Semantic Web Conference, pages 495–512. Springer.

Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal
of Information Science, 33(2):163–180.

Sakr, M., Zimanyi, E., Vaisman, A., and Bakli, M. (2022). User-centered road network
traffic analysis with MobilityDB. Transactions in GIS, 27.

Sharma, C., Sinha, R., and Johnson, K. (2021). Practical and comprehensive formalisms
for modeling contemporary graph query languages. Info. Systems, page 101816.

Srikant, R. and Agrawal, R. (1996). Mining sequential patterns: Generalizations and per-
formance improvements. In Advances in Database Technology—EDBT’96: 5th Interna-
tional Conference on Extending Database Technology Avignon, France, March 25–29,
1996 Proceedings 5, pages 1–17. Springer.

Steer, B., Cuadrado, F., and Clegg, R. (2020). Raphtory: Streaming analysis of dis-
tributed temporal graphs. Future Generation Computer Systems, 102:453–464.

Telikani, A., Gandomi, A. H., and Shahbahrami, A. (2020). A survey of evolutionary
computation for association rule mining. Information Sciences, 524:318–352.

Tian, Y. (2022). The World of Graph Databases from An Industry Perspective.
arXiv:2211.13170 [cs].

Van Rest, O., Hong, S., Kim, J., Meng, X., and Chafi, H. (2016). PGQL: a property graph
query language. In Proceedings of the Fourth International Workshop on Graph Data
Management Experiences and Systems - GRADES ’16, pages 1–6, Redwood Shores,
California. ACM Press.

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., and Wilkins, D. (2010). A com-
parison of a graph database and a relational database: a data provenance perspective.
In Proceedings of the 48th Annual Southeast Regional Conference on - ACM SE ’10,
page 1. ACM Press.

Wan, Z., Mahajan, Y., Kang, B. W., Moore, T. J., and Cho, J.-H. (2021). A Survey
on Centrality Metrics and Their Network Resilience Analysis. IEEE Access, 9:104773–
104819.

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., and Yu, P. S. (2019). Heterogeneous
Graph Attention Network. In The World Wide Web Conference, WWW ’19, pages
2022–2032, New York, NY, USA. Association for Computing Machinery.

Wang, X. S., Jajodia, S., and Subrahmanian, V. (1993). Temporal modules: An approach
toward federated temporal databases. In Proceedings of the 1993 ACM SIGMOD in-
ternational conference on Management of data, pages 227–236.

147

BIBLIOGRAPHY 148

Wu, T., Khan, A., Yong, M., Qi, G., and Wang, M. (2022). Efficiently embedding dynamic
knowledge graphs. Knowledge-Based Systems, 250:109124.

Xiangyu, L., Yingxiao, L., Xiaolin, G., and Zhenhua, Y. (2020). An Efficient Snapshot
Strategy for Dynamic Graph Storage Systems to Support Historical Queries. IEEE
Access, 8:90838–90846.

Yang, Y., Yu, J. X., Gao, H., Pei, J., and Li, J. (2014). Mining most frequently changing
component in evolving graphs. World Wide Web, 17(3):351–376.

Zaki, A., Attia, M., Hegazy, D., and Amin, S. (2016). Comprehensive Survey on Dynamic
Graph Models. International Journal of Advanced Computer Science and Applications,
7(2).

Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine
learning, 42:31–60.

Zhang, F., Wang, K., Li, Z., and Cheng, J. (2019). Temporal Data Representation and
Querying Based on RDF. IEEE Access, 7:85000–85023. Conference Name: IEEE
Access.

Zhang, Y. and Ives, Z. G. (2020). Finding Related Tables in Data Lakes for Interactive
Data Science. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 1951–1966, Portland OR USA. ACM.

Zhao, A., Liu, G., Zheng, B., Zhao, Y., and Zheng, K. (2020). Temporal paths discovery
with multiple constraints in attributed dynamic graphs. World Wide Web, 23(1):313–
336.

148

View publication stats

https://www.researchgate.net/publication/379692061

	Introduction
	Context
	Problem Definition
	How can we incorporate temporal evolution in static graphs ?
	How can we explore graphs with temporal evolution?

	Contributions
	Manuscript Outline

	Modelling Temporal Graphs
	Introduction
	Preliminary
	Graph
	Temporal Graph

	Related Work
	Conceptual level
	Logical level
	Physical level
	Summary

	Conceptual Modelling
	Time
	Temporal Graph
	Temporal Evolution
	Example

	Logical modelling
	Implementation of a Temporal Graph Dataset: a Case Study
	Experimental Assessments
	Protocol
	Technical environment
	Summary
	Results of the efficiency evaluation of our model
	Results of the scalability evaluation of our model

	Conclusion

	Querying Temporal Graphs
	Introduction
	Related Work
	Temporal Graph Algebras
	Extensions of textual query languages
	Programming Tools
	Comparative Analysis of Related Work

	Proposition
	Conceptual Level
	Logical Level
	Physical Level

	Experimental Assessments
	Technical Environment
	Datasets
	Benchmark Analyses
	Experimental Results

	Conclusion

	Knowledge Discovery in Temporal Graphs
	Introduction
	Context
	Challenges
	Contributions and Outline

	Related Work
	Origins of Pattern Mining in Temporal Graphs
	Pattern Mining in Temporal Graphs
	Comparative Analysis of Pattern Mining Approaches in Temporal Graphs

	Frequent Sequential Subgraph Evolutions (FSSE) and Problem Setting
	Dynamic Attributed Graph
	A New Pattern
	Complementary Constraints
	Problem Setting

	Mining Frequent Sequential Subgraph Evolutions (FSSEMiner Algorithm)
	Overview of the Algorithm
	Process of the Algorithm
	Time Complexity of the Algorithm

	Experimental Assessments of FSSEMiner
	Experimental conditions
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion

	Conclusion
	Contributions
	Future Work
	Short-term plan
	Mid-term plan
	Long-term plan

